Abstract:Dataset distillation (DD) entails creating a refined, compact distilled dataset from a large-scale dataset to facilitate efficient training. A significant challenge in DD is the dependency between the distilled dataset and the neural network (NN) architecture used. Training a different NN architecture with a distilled dataset distilled using a specific architecture often results in diminished trainning performance for other architectures. This paper introduces MetaDD, designed to enhance the generalizability of DD across various NN architectures. Specifically, MetaDD partitions distilled data into meta features (i.e., the data's common characteristics that remain consistent across different NN architectures) and heterogeneous features (i.e., the data's unique feature to each NN architecture). Then, MetaDD employs an architecture-invariant loss function for multi-architecture feature alignment, which increases meta features and reduces heterogeneous features in distilled data. As a low-memory consumption component, MetaDD can be seamlessly integrated into any DD methodology. Experimental results demonstrate that MetaDD significantly improves performance across various DD methods. On the Distilled Tiny-Imagenet with Sre2L (50 IPC), MetaDD achieves cross-architecture NN accuracy of up to 30.1\%, surpassing the second-best method (GLaD) by 1.7\%.
Abstract:Large language models (LLMs) have demonstrated exceptional performance across various natural language processing tasks. However, the conventional fixed-length data composition strategy for pretraining, which involves concatenating and splitting documents, can introduce noise and limit the model's ability to capture long-range dependencies. To address this, we first introduce three metrics for evaluating data composition quality: padding ratio, truncation ratio, and concatenation ratio. We further propose a multi-bucket data composition method that moves beyond the fixed-length paradigm, offering a more flexible and efficient approach to pretraining. Extensive experiments demonstrate that our proposed method could significantly improving both the efficiency and efficacy of LLMs pretraining. Our approach not only reduces noise and preserves context but also accelerates training, making it a promising solution for LLMs pretraining.
Abstract:Product review generation is an important task in recommender systems, which could provide explanation and persuasiveness for the recommendation. Recently, Large Language Models (LLMs, e.g., ChatGPT) have shown superior text modeling and generating ability, which could be applied in review generation. However, directly applying the LLMs for generating reviews might be troubled by the ``polite'' phenomenon of the LLMs and could not generate personalized reviews (e.g., negative reviews). In this paper, we propose Review-LLM that customizes LLMs for personalized review generation. Firstly, we construct the prompt input by aggregating user historical behaviors, which include corresponding item titles and reviews. This enables the LLMs to capture user interest features and review writing style. Secondly, we incorporate ratings as indicators of satisfaction into the prompt, which could further improve the model's understanding of user preferences and the sentiment tendency control of generated reviews. Finally, we feed the prompt text into LLMs, and use Supervised Fine-Tuning (SFT) to make the model generate personalized reviews for the given user and target item. Experimental results on the real-world dataset show that our fine-tuned model could achieve better review generation performance than existing close-source LLMs.
Abstract:Finding appropriate experts is essential in Community Question Answering (CQA) platforms as it enables the effective routing of questions to potential users who can provide relevant answers. The key is to personalized learning expert representations based on their historical answered questions, and accurately matching them with target questions. There have been some preliminary works exploring the usability of PLMs in expert finding, such as pre-training expert or question representations. However, these models usually learn pure text representations of experts from histories, disregarding personalized and fine-grained expert modeling. For alleviating this, we present a personalized pre-training and fine-tuning paradigm, which could effectively learn expert interest and expertise simultaneously. Specifically, in our pre-training framework, we integrate historical answered questions of one expert with one target question, and regard it as a candidate aware expert-level input unit. Then, we fuse expert IDs into the pre-training for guiding the model to model personalized expert representations, which can help capture the unique characteristics and expertise of each individual expert. Additionally, in our pre-training task, we design: 1) a question-level masked language model task to learn the relatedness between histories, enabling the modeling of question-level expert interest; 2) a vote-oriented task to capture question-level expert expertise by predicting the vote score the expert would receive. Through our pre-training framework and tasks, our approach could holistically learn expert representations including interests and expertise. Our method has been extensively evaluated on six real-world CQA datasets, and the experimental results consistently demonstrate the superiority of our approach over competitive baseline methods.
Abstract:Deep learning technology can be used as an assistive technology to help doctors quickly and accurately identify COVID-19 infections. Recently, Vision Transformer (ViT) has shown great potential towards image classification due to its global receptive field. However, due to the lack of inductive biases inherent to CNNs, the ViT-based structure leads to limited feature richness and difficulty in model training. In this paper, we propose a new structure called Transformer for COVID-19 (COVT) to improve the performance of ViT-based architectures on small COVID-19 datasets. It uses CNN as a feature extractor to effectively extract local structural information, and introduces average pooling to ViT's Multilayer Perception(MLP) module for global information. Experiments show the effectiveness of our method on the two COVID-19 datasets and the ImageNet dataset.
Abstract:Coronavirus Disease 2019 (COVID-19) has spread globally and become a health crisis faced by humanity since first reported. Radiology imaging technologies such as computer tomography (CT) and chest X-ray imaging (CXR) are effective tools for diagnosing COVID-19. However, in CT and CXR images, the infected area occupies only a small part of the image. Some common deep learning methods that integrate large-scale receptive fields may cause the loss of image detail, resulting in the omission of the region of interest (ROI) in COVID-19 images and are therefore not suitable for further processing. To this end, we propose a deep spatial pyramid pooling (D-SPP) module to integrate contextual information over different resolutions, aiming to extract information under different scales of COVID-19 images effectively. Besides, we propose a COVID-19 infection detection (CID) module to draw attention to the lesion area and remove interference from irrelevant information. Extensive experiments on four CT and CXR datasets have shown that our method produces higher accuracy of detecting COVID-19 lesions in CT and CXR images. It can be used as a computer-aided diagnosis tool to help doctors effectively diagnose and screen for COVID-19.
Abstract:To deploy a well-trained CNN model on low-end computation edge devices, it is usually supposed to compress or prune the model under certain computation budget (e.g., FLOPs). Current filter pruning methods mainly leverage feature maps to generate important scores for filters and prune those with smaller scores, which ignores the variance of input batches to the difference in sparse structure over filters. In this paper, we propose a data agnostic filter pruning method that uses an auxiliary network named Dagger module to induce pruning and takes pretrained weights as input to learn the importance of each filter. In addition, to help prune filters with certain FLOPs constraints, we leverage an explicit FLOPs-aware regularization to directly promote pruning filters toward target FLOPs. Extensive experimental results on CIFAR-10 and ImageNet datasets indicate our superiority to other state-of-the-art filter pruning methods. For example, our 50\% FLOPs ResNet-50 can achieve 76.1\% Top-1 accuracy on ImageNet dataset, surpassing many other filter pruning methods.
Abstract:Text reviews can provide rich useful semantic information for modeling users and items, which can benefit rating prediction in recommendation. Different words and reviews may have different informativeness for users or items. Besides, different users and items should be personalized. Most existing works regard all reviews equally or utilize a general attention mechanism. In this paper, we propose a hierarchical attention model fusing latent factor model for rating prediction with reviews, which can focus on important words and informative reviews. Specially, we use the factor vectors of Latent Factor Model to guide the attention network and combine the factor vectors with feature representation learned from reviews to predict the final ratings. Experiments on real-world datasets validate the effectiveness of our approach.