Abstract:Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Code will be made available at https://github.com/dddavid4real/FOCUS.
Abstract:Survival analysis, as a challenging task, requires integrating Whole Slide Images (WSIs) and genomic data for comprehensive decision-making. There are two main challenges in this task: significant heterogeneity and complex inter- and intra-modal interactions between the two modalities. Previous approaches utilize co-attention methods, which fuse features from both modalities only once after separate encoding. However, these approaches are insufficient for modeling the complex task due to the heterogeneous nature between the modalities. To address these issues, we propose a Biased Progressive Encoding (BPE) paradigm, performing encoding and fusion simultaneously. This paradigm uses one modality as a reference when encoding the other. It enables deep fusion of the modalities through multiple alternating iterations, progressively reducing the cross-modal disparities and facilitating complementary interactions. Besides modality heterogeneity, survival analysis involves various biomarkers from WSIs, genomics, and their combinations. The critical biomarkers may exist in different modalities under individual variations, necessitating flexible adaptation of the models to specific scenarios. Therefore, we further propose a Mixture of Multimodal Experts (MoME) layer to dynamically selects tailored experts in each stage of the BPE paradigm. Experts incorporate reference information from another modality to varying degrees, enabling a balanced or biased focus on different modalities during the encoding process. Extensive experimental results demonstrate the superior performance of our method on various datasets, including TCGA-BLCA, TCGA-UCEC and TCGA-LUAD. Codes are available at https://github.com/BearCleverProud/MoME.
Abstract:Transferring prior knowledge from a source domain to the same or similar target domain can greatly enhance the performance of models on the target domain. However, it is challenging to directly leverage the knowledge from the source domain due to task discrepancy and domain shift. To bridge the gaps between different tasks and domains, we propose a Multi-Head Feature Adaptation module, which projects features in the source feature space to a new space that is more similar to the target space. Knowledge transfer is particularly important in Whole Slide Image (WSI) classification since the number of WSIs in one dataset might be too small to achieve satisfactory performance. Therefore, WSI classification is an ideal testbed for our method, and we adapt multiple knowledge transfer methods for WSI classification. The experimental results show that models with knowledge transfer outperform models that are trained from scratch by a large margin regardless of the number of WSIs in the datasets, and our method achieves state-of-the-art performances among other knowledge transfer methods on multiple datasets, including TCGA-RCC, TCGA-NSCLC, and Camelyon16 datasets.
Abstract:Multiple Instance Learning (MIL) and transformers are increasingly popular in histopathology Whole Slide Image (WSI) classification. However, unlike human pathologists who selectively observe specific regions of histopathology tissues under different magnifications, most methods do not incorporate multiple resolutions of the WSIs, hierarchically and attentively, thereby leading to a loss of focus on the WSIs and information from other resolutions. To resolve this issue, we propose the Hierarchical Attention-Guided Multiple Instance Learning framework to fully exploit the WSIs, which can dynamically and attentively discover the discriminative regions across multiple resolutions of the WSIs. Within this framework, to further enhance the performance of the transformer and obtain a more holistic WSI (bag) representation, we propose an Integrated Attention Transformer, consisting of multiple Integrated Attention Modules, which is the combination of a transformer layer and an aggregation module that produces a bag representation based on every instance representation in that bag. The results of the experiments show that our method achieved state-of-the-art performances on multiple datasets, including Camelyon16, TCGA-RCC, TCGA-NSCLC, and our in-house IMGC dataset.
Abstract:A popular natural language processing task decades ago, word alignment has been dominated until recently by GIZA++, a statistical method based on the 30-year-old IBM models. Though recent years have finally seen Giza++ performance bested, the new methods primarily rely on large machine translation models, massively multilingual language models, or supervision from Giza++ alignments itself. We introduce Embedding-Enhanced Giza++, and outperform Giza++ without any of the aforementioned factors. Taking advantage of monolingual embedding space geometry of the source and target language only, we exceed Giza++'s performance in every tested scenario for three languages. In the lowest-resource scenario of only 500 lines of bitext, we improve performance over Giza++ by 10.9 AER. Our method scales monotonically outperforming Giza++ for all tested scenarios between 500 and 1.9 million lines of bitext. Our code will be made publicly available.