Abstract:While Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by incorporating external knowledge, they still face persistent challenges in retrieval inefficiency and the inability of LLMs to filter out irrelevant information. We present ParetoRAG, an unsupervised framework that optimizes RAG systems through sentence-level refinement guided by the Pareto principle. By decomposing paragraphs into sentences and dynamically re-weighting core content while preserving contextual coherence, ParetoRAG achieves dual improvements in both retrieval precision and generation quality without requiring additional training or API resources. This framework has been empirically validated across various datasets, LLMs, and retrievers.
Abstract:Prototype-based interpretability methods provide intuitive explanations of model prediction by comparing samples to a reference set of memorized exemplars or typical representatives in terms of similarity. In the field of sequential data modeling, similarity calculations of prototypes are usually based on encoded representation vectors. However, due to highly recursive functions, there is usually a non-negligible disparity between the prototype-based explanations and the original input. In this work, we propose a Self-Explaining Selective Model (SESM) that uses a linear combination of prototypical concepts to explain its own predictions. The model employs the idea of case-based reasoning by selecting sub-sequences of the input that mostly activate different concepts as prototypical parts, which users can compare to sub-sequences selected from different example inputs to understand model decisions. For better interpretability, we design multiple constraints including diversity, stability, and locality as training objectives. Extensive experiments in different domains demonstrate that our method exhibits promising interpretability and competitive accuracy.