Abstract:We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at \url{https://voiceshopai.github.io}.
Abstract:Recent progress in music generation has been remarkably advanced by the state-of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the MusicLM requires processing through these LMs one by one to obtain the fine-grained acoustic tokens, making it computationally expensive and prohibitive for a real-time generation. Efficient music generation with a quality on par with MusicLM remains a significant challenge. In this paper, we present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion model that generates music audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform. DPD is proposed to simultaneously model the coarse and fine acoustics by incorporating the semantic information into segments of latents effectively via cross-attention at each denoising step. Our experimental results suggest the superiority of MeLoDy, not only in its practical advantages on sampling speed and infinitely continuable generation, but also in its state-of-the-art musicality, audio quality, and text correlation. Our samples are available at https://Efficient-MeLoDy.github.io/.
Abstract:The main goal of accent conversion (AC) is to convert the accent of speech into the target accent while preserving the content and timbre. Previous reference-based methods rely on reference utterances in the inference phase, which limits their practical application. What's more, previous reference-free methods mostly require parallel data in the training phase. In this paper, we propose a reference-free method based on non-parallel data from the perspective of feature disentanglement. Pseudo Siamese Disentanglement Network (PSDN) is proposed to disentangle the accent information from the content representation and model the target accent. Besides, a timbre augmentation method is proposed to enhance the ability of timbre retaining for speakers without target-accent data. Experimental results show that the proposed system can convert the accent of native American English speech into Indian accent with higher accentedness (3.47) than the baseline (2.75) and input (1.19). The naturalness of converted speech is also comparable to that of the input.
Abstract:In simultaneous translation (SimulMT), the most widely used strategy is the wait-k policy thanks to its simplicity and effectiveness in balancing translation quality and latency. However, wait-k suffers from two major limitations: (a) it is a fixed policy that can not adaptively adjust latency given context, and (b) its training is much slower than full-sentence translation. To alleviate these issues, we propose a novel and efficient training scheme for adaptive SimulMT by augmenting the training corpus with adaptive prefix-to-prefix pairs, while the training complexity remains the same as that of training full-sentence translation models. Experiments on two language pairs show that our method outperforms all strong baselines in terms of translation quality and latency.
Abstract:Recently, speech representation learning has improved many speech-related tasks such as speech recognition, speech classification, and speech-to-text translation. However, all the above tasks are in the direction of speech understanding, but for the inverse direction, speech synthesis, the potential of representation learning is yet to be realized, due to the challenging nature of generating high-quality speech. To address this problem, we propose our framework, Alignment-Aware Acoustic-Text Pretraining (A$^3$T), which reconstructs masked acoustic signals with text input and acoustic-text alignment during training. In this way, the pretrained model can generate high quality of reconstructed spectrogram, which can be applied to the speech editing and unseen speaker TTS directly. Experiments show A$^3$T outperforms SOTA models on speech editing, and improves multi-speaker speech synthesis without the external speaker verification model.
Abstract:Simultaneous speech-to-text translation is widely useful in many scenarios. The conventional cascaded approach uses a pipeline of streaming ASR followed by simultaneous MT, but suffers from error propagation and extra latency. To alleviate these issues, recent efforts attempt to directly translate the source speech into target text simultaneously, but this is much harder due to the combination of two separate tasks. We instead propose a new paradigm with the advantages of both cascaded and end-to-end approaches. The key idea is to use two separate, but synchronized, decoders on streaming ASR and direct speech-to-text translation (ST), respectively, and the intermediate results of ASR guide the decoding policy of (but is not fed as input to) ST. During training time, we use multitask learning to jointly learn these two tasks with a shared encoder. En-to-De and En-to-Es experiments on the MuSTC dataset demonstrate that our proposed technique achieves substantially better translation quality at similar levels of latency.
Abstract:Recently text and speech representation learning has successfully improved many language related tasks. However, all existing methods only learn from one input modality, while a unified acoustic and text representation is desired by many speech-related tasks such as speech translation. We propose a Fused Acoustic and Text Masked Language Model (FAT-MLM) which jointly learns a unified representation for both acoustic and text in-put. Within this cross modal representation learning framework, we further present an end-to-end model for Fused Acoustic and Text Speech Translation (FAT-ST). Experiments on three translation directions show that our proposed speech translation models fine-tuned from FAT-MLM substantially improve translation quality (+5.90 BLEU).
Abstract:End-to-end Speech-to-text Translation (E2E- ST), which directly translates source language speech to target language text, is widely useful in practice, but traditional cascaded approaches (ASR+MT) often suffer from error propagation in the pipeline. On the other hand, existing end-to-end solutions heavily depend on the source language transcriptions for pre-training or multi-task training with Automatic Speech Recognition (ASR). We instead propose a simple technique to learn a robust speech encoder in a self-supervised fashion only on the speech side, which can utilize speech data without transcription. This technique, termed Masked Acoustic Modeling (MAM), can also perform pre-training, for the first time, on any acoustic signals (including non-speech ones) without annotation. Compared with current state-of-the-art models on ST, our technique achieves +1.4 BLEU improvement without using transcriptions, and +1.2 BLEU using transcriptions. The pre-training of MAM with arbitrary acoustic signals also boosts the downstream speech-related tasks.
Abstract:Simultaneous speech-to-speech translation is widely useful but extremely challenging, since it needs to generate target-language speech concurrently with the source-language speech, with only a few seconds delay. In addition, it needs to continuously translate a stream of sentences, but all recent solutions merely focus on the single-sentence scenario. As a result, current approaches accumulate latencies progressively when the speaker talks faster, and introduce unnatural pauses when the speaker talks slower. To overcome these issues, we propose Self-Adaptive Translation (SAT) which flexibly adjusts the length of translations to accommodate different source speech rates. At similar levels of translation quality (as measured by BLEU), our method generates more fluent target speech (as measured by the naturalness metric MOS) with substantially lower latency than the baseline, in both Zh <-> En directions.
Abstract:Simultaneous translation is vastly different from full-sentence translation, in the sense that it starts translation before the source sentence ends, with only a few words delay. However, due to the lack of large scale and publicly available simultaneous translation datasets, most simultaneous translation systems still train with ordinary full-sentence parallel corpora which are not suitable for the simultaneous scenario due to the existence of unnecessary long-distance reorderings. Instead of expensive, time-consuming annotation, we propose a novel method that rewrites the target side of existing full-sentence corpus into simultaneous-style translation. Experiments on Chinese-to-English translation demonstrate about +2.7 BLEU improvements with the addition of newly generated pseudo references.