Abstract:This paper presents our findings of the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes, MU-SHROOM, which focuses on identifying hallucinations and related overgeneration errors in large language models (LLMs). The shared task involves detecting specific text spans that constitute hallucinations in the outputs generated by LLMs in 14 languages. To address this task, we aim to provide a nuanced, model-aware understanding of hallucination occurrences and severity in English. We used natural language inference and fine-tuned a ModernBERT model using a synthetic dataset of 400 samples, achieving an Intersection over Union (IoU) score of 0.032 and a correlation score of 0.422. These results indicate a moderately positive correlation between the model's confidence scores and the actual presence of hallucinations. The IoU score indicates that our model has a relatively low overlap between the predicted hallucination span and the truth annotation. The performance is unsurprising, given the intricate nature of hallucination detection. Hallucinations often manifest subtly, relying on context, making pinpointing their exact boundaries formidable.
Abstract:Numerous successes have been achieved in combating the COVID-19 pandemic, initially using various precautionary measures like lockdowns, social distancing, and the use of face masks. More recently, various vaccinations have been developed to aid in the prevention or reduction of the severity of the COVID-19 infection. Despite the effectiveness of the precautionary measures and the vaccines, there are several controversies that are massively shared on social media platforms like Twitter. In this paper, we explore the use of state-of-the-art transformer-based language models to study people's acceptance of vaccines in Nigeria. We developed a novel dataset by crawling multi-lingual tweets using relevant hashtags and keywords. Our analysis and visualizations revealed that most tweets expressed neutral sentiments about COVID-19 vaccines, with some individuals expressing positive views, and there was no strong preference for specific vaccine types, although Moderna received slightly more positive sentiment. We also found out that fine-tuning a pre-trained LLM with an appropriate dataset can yield competitive results, even if the LLM was not initially pre-trained on the specific language of that dataset.