Abstract:This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Abstract:Spurred by the demand for interpretable models, research on eXplainable AI for language technologies has experienced significant growth, with feature attribution methods emerging as a cornerstone of this progress. While prior work in NLP explored such methods for classification tasks and textual applications, explainability intersecting generation and speech is lagging, with existing techniques failing to account for the autoregressive nature of state-of-the-art models and to provide fine-grained, phonetically meaningful explanations. We address this gap by introducing Spectrogram Perturbation for Explainable Speech-to-text Generation (SPES), a feature attribution technique applicable to sequence generation tasks with autoregressive models. SPES provides explanations for each predicted token based on both the input spectrogram and the previously generated tokens. Extensive evaluation on speech recognition and translation demonstrates that SPES generates explanations that are faithful and plausible to humans.
Abstract:The rise of foundation models (FMs), coupled with regulatory efforts addressing their risks and impacts, has sparked significant interest in open-source models. However, existing speech FMs (SFMs) fall short of full compliance with the open-source principles, even if claimed otherwise, as no existing SFM has model weights, code, and training data publicly available under open-source terms. In this work, we take the first step toward filling this gap by focusing on the 24 official languages of the European Union (EU). We collect suitable training data by surveying automatic speech recognition datasets and unlabeled speech corpora under open-source compliant licenses, for a total of 950k hours. Additionally, we release automatic transcripts for 441k hours of unlabeled data under the permissive CC-BY license, thereby facilitating the creation of open-source SFMs for the EU languages.
Abstract:Subtitling plays a crucial role in enhancing the accessibility of audiovisual content and encompasses three primary subtasks: translating spoken dialogue, segmenting translations into concise textual units, and estimating timestamps that govern their on-screen duration. Past attempts to automate this process rely, to varying degrees, on automatic transcripts, employed diversely for the three subtasks. In response to the acknowledged limitations associated with this reliance on transcripts, recent research has shifted towards transcription-free solutions for translation and segmentation, leaving the direct generation of timestamps as uncharted territory. To fill this gap, we introduce the first direct model capable of producing automatic subtitles, entirely eliminating any dependence on intermediate transcripts also for timestamp prediction. Experimental results, backed by manual evaluation, showcase our solution's new state-of-the-art performance across multiple language pairs and diverse conditions.
Abstract:When translating words referring to the speaker, speech translation (ST) systems should not resort to default masculine generics nor rely on potentially misleading vocal traits. Rather, they should assign gender according to the speakers' preference. The existing solutions to do so, though effective, are hardly feasible in practice as they involve dedicated model re-training on gender-labeled ST data. To overcome these limitations, we propose the first inference-time solution to control speaker-related gender inflections in ST. Our approach partially replaces the (biased) internal language model (LM) implicitly learned by the ST decoder with gender-specific external LMs. Experiments on en->es/fr/it show that our solution outperforms the base models and the best training-time mitigation strategy by up to 31.0 and 1.6 points in gender accuracy, respectively, for feminine forms. The gains are even larger (up to 32.0 and 3.4) in the challenging condition where speakers' vocal traits conflict with their gender.
Abstract:Automatic speech recognition (ASR) systems are known to be sensitive to the sociolinguistic variability of speech data, in which gender plays a crucial role. This can result in disparities in recognition accuracy between male and female speakers, primarily due to the under-representation of the latter group in the training data. While in the context of hybrid ASR models several solutions have been proposed, the gender bias issue has not been explicitly addressed in end-to-end neural architectures. To fill this gap, we propose a data augmentation technique that manipulates the fundamental frequency (f0) and formants. This technique reduces the data unbalance among genders by simulating voices of the under-represented female speakers and increases the variability within each gender group. Experiments on spontaneous English speech show that our technique yields a relative WER improvement up to 9.87% for utterances by female speakers, with larger gains for the least-represented f0 ranges.
Abstract:Automatic subtitling is the task of automatically translating the speech of an audiovisual product into short pieces of timed text, in other words, subtitles and their corresponding timestamps. The generated subtitles need to conform to multiple space and time requirements (length, reading speed) while being synchronised with the speech and segmented in a way that facilitates comprehension. Given its considerable complexity, automatic subtitling has so far been addressed through a pipeline of elements that deal separately with transcribing, translating, segmenting into subtitles and predicting timestamps. In this paper, we propose the first direct automatic subtitling model that generates target language subtitles and their timestamps from the source speech in a single solution. Comparisons with state-of-the-art cascaded models trained with both in- and out-domain data show that our system provides high-quality subtitles while also being competitive in terms of conformity, with all the advantages of maintaining a single model.
Abstract:Subtitles appear on screen as short pieces of text, segmented based on formal constraints (length) and syntactic/semantic criteria. Subtitle segmentation can be evaluated with sequence segmentation metrics against a human reference. However, standard segmentation metrics cannot be applied when systems generate outputs different than the reference, e.g. with end-to-end subtitling systems. In this paper, we study ways to conduct reference-based evaluations of segmentation accuracy irrespective of the textual content. We first conduct a systematic analysis of existing metrics for evaluating subtitle segmentation. We then introduce $Sigma$, a new Subtitle Segmentation Score derived from an approximate upper-bound of BLEU on segmentation boundaries, which allows us to disentangle the effect of good segmentation from text quality. To compare $Sigma$ with existing metrics, we further propose a boundary projection method from imperfect hypotheses to the true reference. Results show that all metrics are able to reward high quality output but for similar outputs system ranking depends on each metric's sensitivity to error type. Our thorough analyses suggest $Sigma$ is a promising segmentation candidate but its reliability over other segmentation metrics remains to be validated through correlations with human judgements.
Abstract:Five years after the first published proofs of concept, direct approaches to speech translation (ST) are now competing with traditional cascade solutions. In light of this steady progress, can we claim that the performance gap between the two is closed? Starting from this question, we present a systematic comparison between state-of-the-art systems representative of the two paradigms. Focusing on three language directions (English-German/Italian/Spanish), we conduct automatic and manual evaluations, exploiting high-quality professional post-edits and annotations. Our multi-faceted analysis on one of the few publicly available ST benchmarks attests for the first time that: i) the gap between the two paradigms is now closed, and ii) the subtle differences observed in their behavior are not sufficient for humans neither to distinguish them nor to prefer one over the other.
Abstract:The audio segmentation mismatch between training data and those seen at run-time is a major problem in direct speech translation. Indeed, while systems are usually trained on manually segmented corpora, in real use cases they are often presented with continuous audio requiring automatic (and sub-optimal) segmentation. After comparing existing techniques (VAD-based, fixed-length and hybrid segmentation methods), in this paper we propose enhanced hybrid solutions to produce better results without sacrificing latency. Through experiments on different domains and language pairs, we show that our methods outperform all the other techniques, reducing by at least 30% the gap between the traditional VAD-based approach and optimal manual segmentation.