Abstract:Representation-based retrieval models, so-called biencoders, estimate the relevance of a document to a query by calculating the similarity of their respective embeddings. Current state-of-the-art biencoders are trained using an expensive training regime involving knowledge distillation from a teacher model and batch-sampling. Instead of relying on a teacher model, we contribute a novel parameter-free loss function for self-supervision that exploits the pre-trained language modeling capabilities of the encoder model as a training signal, eliminating the need for batch sampling by performing implicit hard negative mining. We investigate the capabilities of our proposed approach through extensive ablation studies, demonstrating that self-distillation can match the effectiveness of teacher distillation using only 13.5% of the data, while offering a speedup in training time between 3x and 15x compared to parametrized losses. Code and data is made openly available.
Abstract:Recent advances in large language models have enabled the development of viable generative information retrieval systems. A generative retrieval system returns a grounded generated text in response to an information need instead of the traditional document ranking. Quantifying the utility of these types of responses is essential for evaluating generative retrieval systems. As the established evaluation methodology for ranking-based ad hoc retrieval may seem unsuitable for generative retrieval, new approaches for reliable, repeatable, and reproducible experimentation are required. In this paper, we survey the relevant information retrieval and natural language processing literature, identify search tasks and system architectures in generative retrieval, develop a corresponding user model, and study its operationalization. This theoretical analysis provides a foundation and new insights for the evaluation of generative ad hoc retrieval systems.
Abstract:The Archive Query Log (AQL) is a previously unused, comprehensive query log collected at the Internet Archive over the last 25 years. Its first version includes 356 million queries, 166 million search result pages, and 1.7 billion search results across 550 search providers. Although many query logs have been studied in the literature, the search providers that own them generally do not publish their logs to protect user privacy and vital business data. Of the few query logs publicly available, none combines size, scope, and diversity. The AQL is the first to do so, enabling research on new retrieval models and (diachronic) search engine analyses. Provided in a privacy-preserving manner, it promotes open research as well as more transparency and accountability in the search industry.
Abstract:With an ever-growing number of new publications each day, scientific writing poses an interesting domain for authorship analysis of both single-author and multi-author documents. Unfortunately, most existing corpora lack either material from the science domain or the required metadata. Hence, we present SMAuC, a new metadata-rich corpus designed specifically for authorship analysis in scientific writing. With more than three million publications from various scientific disciplines, SMAuC is the largest openly available corpus for authorship analysis to date. It combines a wide and diverse range of scientific texts from the humanities and natural sciences with rich and curated metadata, including unique and carefully disambiguated author IDs. We hope SMAuC will contribute significantly to advancing the field of authorship analysis in the science domain.
Abstract:Pairwise re-ranking models predict which of two documents is more relevant to a query and then aggregate a final ranking from such preferences. This is often more effective than pointwise re-ranking models that directly predict a relevance value for each document. However, the high inference overhead of pairwise models limits their practical application: usually, for a set of $k$ documents to be re-ranked, preferences for all $k^2-k$ comparison pairs excluding self-comparisons are aggregated. We investigate whether the efficiency of pairwise re-ranking can be improved by sampling from all pairs. In an exploratory study, we evaluate three sampling methods and five preference aggregation methods. The best combination allows for an order of magnitude fewer comparisons at an acceptable loss of retrieval effectiveness, while competitive effectiveness is already achieved with about one third of the comparisons.
Abstract:This technical report documents our efforts in addressing the tasks set forth by the 2021 AMoC (Advanced Modelling of Cyber Criminal Careers) Hackathon. Our main contribution is a joint visualisation of semantic and temporal features, generating insight into the supplied data on darknet cybercrime through the aspects of novelty, transience, and resonance, which describe the potential impact a message might have on the overall discourse in darknet communities. All code and data produced by us as part of this hackathon is publicly available.
Abstract:We present the Webis-STEREO-21 dataset, a massive collection of Scientific Text Reuse in Open-access publications. It contains more than 91 million cases of reused text passages found in 4.2 million unique open-access publications. Featuring a high coverage of scientific disciplines and varieties of reuse, as well as comprehensive metadata to contextualize each case, our dataset addresses the most salient shortcomings of previous ones on scientific writing. Webis-STEREO-21 allows for tackling a wide range of research questions from different scientific backgrounds, facilitating both qualitative and quantitative analysis of the phenomenon as well as a first-time grounding on the base rate of text reuse in scientific publications.
Abstract:Commercial web search engines employ near-duplicate detection to ensure that users see each relevant result only once, albeit the underlying web crawls typically include (near-)duplicates of many web pages. We revisit the risks and potential of near-duplicates with an information retrieval focus, motivating that current efforts toward an open and independent European web search infrastructure should maintain metadata on duplicate and near-duplicate documents in its index. Near-duplicate detection implemented in an open web search infrastructure should provide a suitable similarity threshold, a difficult choice since identical pages may substantially differ in parts of a page that are irrelevant to searchers (templates, advertisements, etc.). We study this problem by comparing the similarity of pages for five (main) content extraction methods in two studies on the ClueWeb crawls. We find that the full content of pages serves precision-oriented near-duplicate-detection, while main content extraction is more recall-oriented.