Abstract:We present the Webis-STEREO-21 dataset, a massive collection of Scientific Text Reuse in Open-access publications. It contains more than 91 million cases of reused text passages found in 4.2 million unique open-access publications. Featuring a high coverage of scientific disciplines and varieties of reuse, as well as comprehensive metadata to contextualize each case, our dataset addresses the most salient shortcomings of previous ones on scientific writing. Webis-STEREO-21 allows for tackling a wide range of research questions from different scientific backgrounds, facilitating both qualitative and quantitative analysis of the phenomenon as well as a first-time grounding on the base rate of text reuse in scientific publications.
Abstract:Point clouds provide a flexible and natural representation usable in countless applications such as robotics or self-driving cars. Recently, deep neural networks operating on raw point cloud data have shown promising results on supervised learning tasks such as object classification and semantic segmentation. While massive point cloud datasets can be captured using modern scanning technology, manually labelling such large 3D point clouds for supervised learning tasks is a cumbersome process. This necessitates effective unsupervised learning methods that can produce representations such that downstream tasks require significantly fewer annotated samples. We propose a novel method for unsupervised learning on raw point cloud data in which a neural network is trained to predict the spatial relationship between two point cloud segments. While solving this task, representations that capture semantic properties of the point cloud are learned. Our method outperforms previous unsupervised learning approaches in downstream object classification and segmentation tasks and performs on par with fully supervised methods.