Abstract:The Knowledge Graph Completion~(KGC) task aims to infer the missing entity from an incomplete triple. Existing embedding-based methods rely solely on triples in the KG, which is vulnerable to specious relation patterns and long-tail entities. On the other hand, text-based methods struggle with the semantic gap between KG triples and natural language. Apart from triples, entity contexts (e.g., labels, descriptions, aliases) also play a significant role in augmenting KGs. To address these limitations, we propose KGR3, a context-enriched framework for KGC. KGR3 is composed of three modules. Firstly, the Retrieval module gathers supporting triples from the KG, collects plausible candidate answers from a base embedding model, and retrieves context for each related entity. Then, the Reasoning module employs a large language model to generate potential answers for each query triple. Finally, the Re-ranking module combines candidate answers from the two modules mentioned above, and fine-tunes an LLM to provide the best answer. Extensive experiments on widely used datasets demonstrate that KGR3 consistently improves various KGC methods. Specifically, the best variant of KGR3 achieves absolute Hits@1 improvements of 12.3% and 5.6% on the FB15k237 and WN18RR datasets.
Abstract:Inductive knowledge graph completion (KGC) aims to predict missing triples with unseen entities. Recent works focus on modeling reasoning paths between the head and tail entity as direct supporting evidence. However, these methods depend heavily on the existence and quality of reasoning paths, which limits their general applicability in different scenarios. In addition, we observe that latent type constraints and neighboring facts inherent in KGs are also vital in inferring missing triples. To effectively utilize all useful information in KGs, we introduce CATS, a novel context-aware inductive KGC solution. With sufficient guidance from proper prompts and supervised fine-tuning, CATS activates the strong semantic understanding and reasoning capabilities of large language models to assess the existence of query triples, which consist of two modules. First, the type-aware reasoning module evaluates whether the candidate entity matches the latent entity type as required by the query relation. Then, the subgraph reasoning module selects relevant reasoning paths and neighboring facts, and evaluates their correlation to the query triple. Experiment results on three widely used datasets demonstrate that CATS significantly outperforms state-of-the-art methods in 16 out of 18 transductive, inductive, and few-shot settings with an average absolute MRR improvement of 7.2%.
Abstract:Selecting a sample generation scheme from multiple text-based generative models is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed framework adapts the kernelized contextual bandit (CB) methodology to a CB setting with shared context variables across arms, utilizing the generated data to update a kernel-based function that predicts which model will achieve the highest score for unseen text prompts. Additionally, we apply random Fourier features (RFF) to the kernelized CB algorithm to accelerate the online learning process and establish a $\widetilde{\mathcal{O}}(\sqrt{T})$ regret bound for the proposed RFF-based CB algorithm over T iterations. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show RFF-UCB performs successfully in identifying the best generation model across different sample types.
Abstract:Existing frameworks for evaluating and comparing generative models typically target an offline setting, where the evaluator has access to full batches of data produced by the models. However, in many practical scenarios, the goal is to identify the best model using the fewest generated samples to minimize the costs of querying data from the models. Such an online comparison is challenging with current offline assessment methods. In this work, we propose an online evaluation framework to find the generative model that maximizes a standard assessment score among a group of available models. Our method uses an optimism-based multi-armed bandit framework to identify the model producing data with the highest evaluation score, quantifying the quality and diversity of generated data. Specifically, we study the online assessment of generative models based on the Fr\'echet Inception Distance (FID) and Inception Score (IS) metrics and propose the FID-UCB and IS-UCB algorithms leveraging the upper confidence bound approach in online learning. We prove sub-linear regret bounds for these algorithms and present numerical results on standard image datasets, demonstrating their effectiveness in identifying the score-maximizing generative model.
Abstract:The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the \textit{\textbf{structural knowledge}} in the local neighborhood of entities, disregarding \textit{\textbf{semantic knowledge}} in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel \textbf{\underline{S}}emantic and \textbf{\underline{S}}tructure-aware KG \textbf{\underline{E}}ntity \textbf{\underline{T}}yping~{(SSET)} framework, which is composed of three modules. First, the \textit{Semantic Knowledge Encoding} module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the \textit{Structural Knowledge Aggregation} module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the \textit{Unsupervised Type Re-ranking} module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.
Abstract:Reinforcement learning (RL) problems where the learner attempts to infer an unobserved reward from some feedback variables have been studied in several recent papers. The setting of Interaction-Grounded Learning (IGL) is an example of such feedback-based reinforcement learning tasks where the learner optimizes the return by inferring latent binary rewards from the interaction with the environment. In the IGL setting, a relevant assumption used in the RL literature is that the feedback variable $Y$ is conditionally independent of the context-action $(X,A)$ given the latent reward $R$. In this work, we propose Variational Information-based IGL (VI-IGL) as an information-theoretic method to enforce the conditional independence assumption in the IGL-based RL problem. The VI-IGL framework learns a reward decoder using an information-based objective based on the conditional mutual information (MI) between the context-action $(X,A)$ and the feedback variable $Y$ observed from the environment. To estimate and optimize the information-based terms for the continuous random variables in the RL problem, VI-IGL leverages the variational representation of mutual information and results in a min-max optimization problem. Furthermore, we extend the VI-IGL framework to general $f$-Information measures in the information theory literature, leading to the generalized $f$-VI-IGL framework to address the RL problem under the IGL condition. Finally, we provide the empirical results of applying the VI-IGL method to several reinforcement learning settings, which indicate an improved performance in comparison to the previous IGL-based RL algorithm.
Abstract:We study risk-sensitive Reinforcement Learning (RL), where we aim to maximize the Conditional Value at Risk (CVaR) with a fixed risk tolerance $\tau$. Prior theoretical work studying risk-sensitive RL focuses on the tabular Markov Decision Processes (MDPs) setting. To extend CVaR RL to settings where state space is large, function approximation must be deployed. We study CVaR RL in low-rank MDPs with nonlinear function approximation. Low-rank MDPs assume the underlying transition kernel admits a low-rank decomposition, but unlike prior linear models, low-rank MDPs do not assume the feature or state-action representation is known. We propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to carefully balance the interplay between exploration, exploitation, and representation learning in CVaR RL. We prove that our algorithm achieves a sample complexity of $\tilde{O}\left(\frac{H^7 A^2 d^4}{\tau^2 \epsilon^2}\right)$ to yield an $\epsilon$-optimal CVaR, where $H$ is the length of each episode, $A$ is the capacity of action space, and $d$ is the dimension of representations. Computational-wise, we design a novel discretized Least-Squares Value Iteration (LSVI) algorithm for the CVaR objective as the planning oracle and show that we can find the near-optimal policy in a polynomial running time with a Maximum Likelihood Estimation oracle. To our knowledge, this is the first provably efficient CVaR RL algorithm in low-rank MDPs.
Abstract:Human activity recognition (HAR) through wearable devices has received much interest due to its numerous applications in fitness tracking, wellness screening, and supported living. As a result, we have seen a great deal of work in this field. Traditional deep learning (DL) has set a state of the art performance for HAR domain. However, it ignores the data's structure and the association between consecutive time stamps. To address this constraint, we offer an approach based on Graph Neural Networks (GNNs) for structuring the input representation and exploiting the relations among the samples. However, even when using a simple graph convolution network to eliminate this shortage, there are still several limiting factors, such as inter-class activities issues, skewed class distribution, and a lack of consideration for sensor data priority, all of which harm the HAR model's performance. To improve the current HAR model's performance, we investigate novel possibilities within the framework of graph structure to achieve highly discriminated and rich activity features. We propose a model for (1) time-series-graph module that converts raw data from HAR dataset into graphs; (2) Graph Convolutional Neural Networks (GCNs) to discover local dependencies and correlations between neighboring nodes; and (3) self-attention GNN encoder to identify sensors interactions and data priorities. To the best of our knowledge, this is the first work for HAR, which introduces a GNN-based approach that incorporates both the GCN and the attention mechanism. By employing a uniform evaluation method, our framework significantly improves the performance on hospital patient's activities dataset comparatively considered other state of the art baseline methods.
Abstract:Multi-agent reinforcement learning (MARL) can model many real world applications. However, many MARL approaches rely on epsilon greedy for exploration, which may discourage visiting advantageous states in hard scenarios. In this paper, we propose a new approach QMIX(SEG) for tackling MARL. It makes use of the value function factorization method QMIX to train per-agent policies and a novel Semantic Epsilon Greedy (SEG) exploration strategy. SEG is a simple extension to the conventional epsilon greedy exploration strategy, yet it is experimentally shown to greatly improve the performance of MARL. We first cluster actions into groups of actions with similar effects and then use the groups in a bi-level epsilon greedy exploration hierarchy for action selection. We argue that SEG facilitates semantic exploration by exploring in the space of groups of actions, which have richer semantic meanings than atomic actions. Experiments show that QMIX(SEG) largely outperforms QMIX and leads to strong performance competitive with current state-of-the-art MARL approaches on the StarCraft Multi-Agent Challenge (SMAC) benchmark.
Abstract:Understanding the evolutionary dynamics of reinforcement learning under multi-agent settings has long remained an open problem. While previous works primarily focus on 2-player games, we consider population games, which model the strategic interactions of a large population comprising small and anonymous agents. This paper presents a formal relation between stochastic processes and the dynamics of independent learning agents who reason based on the reward signals. Using a master equation approach, we provide a novel unified framework for characterising population dynamics via a single partial differential equation (Theorem 1). Through a case study involving Cross learning agents, we illustrate that Theorem 1 allows us to identify qualitatively different evolutionary dynamics, to analyse steady states, and to gain insights into the expected behaviour of a population. In addition, we present extensive experimental results validating that Theorem 1 holds for a variety of learning methods and population games.