Abstract:Tiny object classification problem exists in many machine learning applications like medical imaging or remote sensing, where the object of interest usually occupies a small region of the whole image. It is challenging to design an efficient machine learning model with respect to tiny object of interest. Current neural network structures are unable to deal with tiny object efficiently because they are mainly developed for images featured by large scale objects. However, in quantum physics, there is a great theoretical foundation guiding us to analyze the target function for image classification regarding to specific objects size ratio. In our work, we apply Tensor Networks to solve this arising tough machine learning problem. First, we summarize the previous work that connects quantum spin model to image classification and bring the theory into the scenario of tiny object classification. Second, we propose using 2D multi-scale entanglement renormalization ansatz (MERA) to classify tiny objects in image. In the end, our experimental results indicate that tensor network models are effective for tiny object classification problem and potentially will beat state-of-the-art. Our codes will be available online https://github.com/timqqt/MERA_Image_Classification.
Abstract:Intelligent transportation systems (ITSs) are envisioned to be crucial for smart cities, which aims at improving traffic flow to improve the life quality of urban residents and reducing congestion to improve the efficiency of commuting. However, several challenges need to be resolved before such systems can be deployed, for example, conventional solutions for Markov decision process (MDP) and single-agent Reinforcement Learning (RL) algorithms suffer from poor scalability, and multi-agent systems suffer from poor communication and coordination. In this paper, we explore the potential of mutual information sharing, or in other words, spatial influence based communication, to optimize traffic light control policy. First, we mathematically analyze the transportation system. We conclude that the transportation system does not have stationary Nash Equilibrium, thereby reinforcement learning algorithms offer suitable solutions. Secondly, we describe how to build a multi-agent Deep Deterministic Policy Gradient (DDPG) system with spatial influence and social group utility incorporated. Then we utilize the grid topology road network to empirically demonstrate the scalability of the new system. We demonstrate three types of directed communications to show the effect of directions of social influence on the entire network utility and individual utility. Lastly, we define "selfish index" and analyze the effect of it on total group utility.
Abstract:Liquidation is the process of selling a large number of shares of one stock sequentially within a given time frame, taking into consideration the costs arising from market impact and a trader's risk aversion. The main challenge in optimizing liquidation is to find an appropriate modeling system that can incorporate the complexities of the stock market and generate practical trading strategies. In this paper, we propose to use multi-agent deep reinforcement learning model, which better captures high-level complexities comparing to various machine learning methods, such that agents can learn how to make the best selling decisions. First, we theoretically analyze the Almgren and Chriss model and extend its fundamental mechanism so it can be used as the multi-agent trading environment. Our work builds the foundation for future multi-agent environment trading analysis. Secondly, we analyze the cooperative and competitive behaviours between agents by adjusting the reward functions for each agent, which overcomes the limitation of single-agent reinforcement learning algorithms. Finally, we simulate trading and develop an optimal trading strategy with practical constraints by using a reinforcement learning method, which shows the capabilities of reinforcement learning methods in solving realistic liquidation problems.