Abstract:Conversational scenarios are very common in real-world settings, yet existing co-speech motion synthesis approaches often fall short in these contexts, where one person's audio and gestures will influence the other's responses. Additionally, most existing methods rely on offline sequence-to-sequence frameworks, which are unsuitable for online applications. In this work, we introduce an audio-driven, auto-regressive system designed to synthesize dynamic movements for two characters during a conversation. At the core of our approach is a diffusion-based full-body motion synthesis model, which is conditioned on the past states of both characters, speech audio, and a task-oriented motion trajectory input, allowing for flexible spatial control. To enhance the model's ability to learn diverse interactions, we have enriched existing two-person conversational motion datasets with more dynamic and interactive motions. We evaluate our system through multiple experiments to show it outperforms across a variety of tasks, including single and two-person co-speech motion generation, as well as interactive motion generation. To the best of our knowledge, this is the first system capable of generating interactive full-body motions for two characters from speech in an online manner.
Abstract:We address the problem of accurate capture and expressive modelling of interactive behaviors happening between two persons in daily scenarios. Different from previous works which either only consider one person or focus on conversational gestures, we propose to simultaneously model the activities of two persons, and target objective-driven, dynamic, and coherent interactions which often span long duration. To this end, we capture a new dataset dubbed InterAct, which is composed of 241 motion sequences where two persons perform a realistic scenario over the whole sequence. The audios, body motions, and facial expressions of both persons are all captured in our dataset. We also demonstrate the first diffusion model based approach that directly estimates the interactive motions between two persons from their audios alone. All the data and code will be available for research purposes upon acceptance of the paper.