Abstract:Many surveillance cameras switch between daytime and nighttime modes based on illuminance levels. During the day, the camera records ordinary RGB images through an enabled IR-cut filter. At night, the filter is disabled to capture near-infrared (NIR) light emitted from NIR LEDs typically mounted around the lens. While RGB-based AI algorithm vulnerabilities have been widely reported, the vulnerabilities of NIR-based AI have rarely been investigated. In this paper, we identify fundamental vulnerabilities in NIR-based image understanding caused by color and texture loss due to the intrinsic characteristics of clothes' reflectance and cameras' spectral sensitivity in the NIR range. We further show that the nearly co-located configuration of illuminants and cameras in existing surveillance systems facilitates concealing and fully passive attacks in the physical world. Specifically, we demonstrate how retro-reflective and insulation plastic tapes can manipulate the intensity distribution of NIR images. We showcase an attack on the YOLO-based human detector using binary patterns designed in the digital space (via black-box query and searching) and then physically realized using tapes pasted onto clothes. Our attack highlights significant reliability concerns for nighttime surveillance systems, which are intended to enhance security. Codes Available: https://github.com/MyNiuuu/AdvNIR
Abstract:Amid the proliferation of forged images, notably the tsunami of deepfake content, extensive research has been conducted on using artificial intelligence (AI) to identify forged content in the face of continuing advancements in counterfeiting technologies. We have investigated the use of AI to provide the original authentic image after deepfake detection, which we believe is a reliable and persuasive solution. We call this "image-based automated fact verification," a name that originated from a text-based fact-checking system used by journalists. We have developed a two-phase open framework that integrates detection and retrieval components. Additionally, inspired by a dataset proposed by Meta Fundamental AI Research, we further constructed a large-scale dataset that is specifically designed for this task. This dataset simulates real-world conditions and includes both content-preserving and content-aware manipulations that present a range of difficulty levels and have potential for ongoing research. This multi-task dataset is fully annotated, enabling it to be utilized for sub-tasks within the forgery identification and fact retrieval domains. This paper makes two main contributions: (1) We introduce a new task, "image-based automated fact verification," and present a novel two-phase open framework combining "forgery identification" and "fact retrieval." (2) We present a large-scale dataset tailored for this new task that features various hand-crafted image edits and machine learning-driven manipulations, with extensive annotations suitable for various sub-tasks. Extensive experimental results validate its practicality for fact verification research and clarify its difficulty levels for various sub-tasks.
Abstract:Backdoor attacks compromise the integrity and reliability of machine learning models by embedding a hidden trigger during the training process, which can later be activated to cause unintended misbehavior. We propose a novel backdoor mitigation approach via machine unlearning to counter such backdoor attacks. The proposed method utilizes model activation of domain-equivalent unseen data to guide the editing of the model's weights. Unlike the previous unlearning-based mitigation methods, ours is computationally inexpensive and achieves state-of-the-art performance while only requiring a handful of unseen samples for unlearning. In addition, we also point out that unlearning the backdoor may cause the whole targeted class to be unlearned, thus introducing an additional repair step to preserve the model's utility after editing the model. Experiment results show that the proposed method is effective in unlearning the backdoor on different datasets and trigger patterns.
Abstract:This paper investigates the effectiveness of self-supervised pre-trained transformers compared to supervised pre-trained transformers and conventional neural networks (ConvNets) for detecting various types of deepfakes. We focus on their potential for improved generalization, particularly when training data is limited. Despite the notable success of large vision-language models utilizing transformer architectures in various tasks, including zero-shot and few-shot learning, the deepfake detection community has still shown some reluctance to adopt pre-trained vision transformers (ViTs), especially large ones, as feature extractors. One concern is their perceived excessive capacity, which often demands extensive data, and the resulting suboptimal generalization when training or fine-tuning data is small or less diverse. This contrasts poorly with ConvNets, which have already established themselves as robust feature extractors. Additionally, training and optimizing transformers from scratch requires significant computational resources, making this accessible primarily to large companies and hindering broader investigation within the academic community. Recent advancements in using self-supervised learning (SSL) in transformers, such as DINO and its derivatives, have showcased significant adaptability across diverse vision tasks and possess explicit semantic segmentation capabilities. By leveraging DINO for deepfake detection with modest training data and implementing partial fine-tuning, we observe comparable adaptability to the task and the natural explainability of the detection result via the attention mechanism. Moreover, partial fine-tuning of transformers for deepfake detection offers a more resource-efficient alternative, requiring significantly fewer computational resources.
Abstract:We propose a method for generating spurious features by leveraging large-scale text-to-image diffusion models. Although the previous work detects spurious features in a large-scale dataset like ImageNet and introduces Spurious ImageNet, we found that not all spurious images are spurious across different classifiers. Although spurious images help measure the reliance of a classifier, filtering many images from the Internet to find more spurious features is time-consuming. To this end, we utilize an existing approach of personalizing large-scale text-to-image diffusion models with available discovered spurious images and propose a new spurious feature similarity loss based on neural features of an adversarially robust model. Precisely, we fine-tune Stable Diffusion with several reference images from Spurious ImageNet with a modified objective incorporating the proposed spurious-feature similarity loss. Experiment results show that our method can generate spurious images that are consistently spurious across different classifiers. Moreover, the generated spurious images are visually similar to reference images from Spurious ImageNet.
Abstract:The emergence of large language models (LLMs), such as Generative Pre-trained Transformer 4 (GPT-4) used by ChatGPT, has profoundly impacted the academic and broader community. While these models offer numerous advantages in terms of revolutionizing work and study methods, they have also garnered significant attention due to their potential negative consequences. One example is generating academic reports or papers with little to no human contribution. Consequently, researchers have focused on developing detectors to address the misuse of LLMs. However, most existing methods prioritize achieving higher accuracy on restricted datasets, neglecting the crucial aspect of generalizability. This limitation hinders their practical application in real-life scenarios where reliability is paramount. In this paper, we present a comprehensive analysis of the impact of prompts on the text generated by LLMs and highlight the potential lack of robustness in one of the current state-of-the-art GPT detectors. To mitigate these issues concerning the misuse of LLMs in academic writing, we propose a reference-based Siamese detector named Synthetic-Siamese which takes a pair of texts, one as the inquiry and the other as the reference. Our method effectively addresses the lack of robustness of previous detectors (OpenAI detector and DetectGPT) and significantly improves the baseline performances in realistic academic writing scenarios by approximately 67% to 95%.
Abstract:A new approach to linguistic watermarking of language models is presented in which information is imperceptibly inserted into the output text while preserving its readability and original meaning. A cross-attention mechanism is used to embed watermarks in the text during inference. Two methods using cross-attention are presented that minimize the effect of watermarking on the performance of a pretrained model. Exploration of different training strategies for optimizing the watermarking and of the challenges and implications of applying this approach in real-world scenarios clarified the tradeoff between watermark robustness and text quality. Watermark selection substantially affects the generated output for high entropy sentences. This proactive watermarking approach has potential application in future model development.
Abstract:We propose the use of a Transformer to accurately predict normals from point clouds with noise and density variations. Previous learning-based methods utilize PointNet variants to explicitly extract multi-scale features at different input scales, then focus on a surface fitting method by which local point cloud neighborhoods are fitted to a geometric surface approximated by either a polynomial function or a multi-layer perceptron (MLP). However, fitting surfaces to fixed-order polynomial functions can suffer from overfitting or underfitting, and learning MLP-represented hyper-surfaces requires pre-generated per-point weights. To avoid these limitations, we first unify the design choices in previous works and then propose a simplified Transformer-based model to extract richer and more robust geometric features for the surface normal estimation task. Through extensive experiments, we demonstrate that our Transformer-based method achieves state-of-the-art performance on both the synthetic shape dataset PCPNet, and the real-world indoor scene dataset SceneNN, exhibiting more noise-resilient behavior and significantly faster inference. Most importantly, we demonstrate that the sophisticated hand-designed modules in existing works are not necessary to excel at the task of surface normal estimation.
Abstract:The growing diversity of digital face manipulation techniques has led to an urgent need for a universal and robust detection technology to mitigate the risks posed by malicious forgeries. We present a blended-based detection approach that has robust applicability to unseen datasets. It combines a method for generating synthetic training samples, i.e., reconstructed blended images, that incorporate potential deepfake generator artifacts and a detection model, a multi-scale feature reconstruction network, for capturing the generic boundary artifacts and noise distribution anomalies brought about by digital face manipulations. Experiments demonstrated that this approach results in better performance in both cross-manipulation detection and cross-dataset detection on unseen data.
Abstract:In this paper, we challenge the conventional belief that supervised ImageNet-trained models have strong generalizability and are suitable for use as feature extractors in deepfake detection. We present a new measurement, "model separability," for visually and quantitatively assessing a model's raw capacity to separate data in an unsupervised manner. We also present a systematic benchmark for determining the correlation between deepfake detection and other computer vision tasks using pre-trained models. Our analysis shows that pre-trained face recognition models are more closely related to deepfake detection than other models. Additionally, models trained using self-supervised methods are more effective in separation than those trained using supervised methods. After fine-tuning all models on a small deepfake dataset, we found that self-supervised models deliver the best results, but there is a risk of overfitting. Our results provide valuable insights that should help researchers and practitioners develop more effective deepfake detection models.