Abstract:Amid the proliferation of forged images, notably the tsunami of deepfake content, extensive research has been conducted on using artificial intelligence (AI) to identify forged content in the face of continuing advancements in counterfeiting technologies. We have investigated the use of AI to provide the original authentic image after deepfake detection, which we believe is a reliable and persuasive solution. We call this "image-based automated fact verification," a name that originated from a text-based fact-checking system used by journalists. We have developed a two-phase open framework that integrates detection and retrieval components. Additionally, inspired by a dataset proposed by Meta Fundamental AI Research, we further constructed a large-scale dataset that is specifically designed for this task. This dataset simulates real-world conditions and includes both content-preserving and content-aware manipulations that present a range of difficulty levels and have potential for ongoing research. This multi-task dataset is fully annotated, enabling it to be utilized for sub-tasks within the forgery identification and fact retrieval domains. This paper makes two main contributions: (1) We introduce a new task, "image-based automated fact verification," and present a novel two-phase open framework combining "forgery identification" and "fact retrieval." (2) We present a large-scale dataset tailored for this new task that features various hand-crafted image edits and machine learning-driven manipulations, with extensive annotations suitable for various sub-tasks. Extensive experimental results validate its practicality for fact verification research and clarify its difficulty levels for various sub-tasks.
Abstract:Video summarization is a crucial research area that aims to efficiently browse and retrieve relevant information from the vast amount of video content available today. With the exponential growth of multimedia data, the ability to extract meaningful representations from videos has become essential. Video summarization techniques automatically generate concise summaries by selecting keyframes, shots, or segments that capture the video's essence. This process improves the efficiency and accuracy of various applications, including video surveillance, education, entertainment, and social media. Despite the importance of video summarization, there is a lack of diverse and representative datasets, hindering comprehensive evaluation and benchmarking of algorithms. Existing evaluation metrics also fail to fully capture the complexities of video summarization, limiting accurate algorithm assessment and hindering the field's progress. To overcome data scarcity challenges and improve evaluation, we propose an unsupervised approach that leverages video data structure and information for generating informative summaries. By moving away from fixed annotations, our framework can produce representative summaries effectively. Moreover, we introduce an innovative evaluation pipeline tailored specifically for video summarization. Human participants are involved in the evaluation, comparing our generated summaries to ground truth summaries and assessing their informativeness. This human-centric approach provides valuable insights into the effectiveness of our proposed techniques. Experimental results demonstrate that our training-free framework outperforms existing unsupervised approaches and achieves competitive results compared to state-of-the-art supervised methods.
Abstract:In this paper, we present TAC-SUM, a novel and efficient training-free approach for video summarization that addresses the limitations of existing cluster-based models by incorporating temporal context. Our method partitions the input video into temporally consecutive segments with clustering information, enabling the injection of temporal awareness into the clustering process, setting it apart from prior cluster-based summarization methods. The resulting temporal-aware clusters are then utilized to compute the final summary, using simple rules for keyframe selection and frame importance scoring. Experimental results on the SumMe dataset demonstrate the effectiveness of our proposed approach, outperforming existing unsupervised methods and achieving comparable performance to state-of-the-art supervised summarization techniques. Our source code is available for reference at \url{https://github.com/hcmus-thesis-gulu/TAC-SUM}.
Abstract:This paper presents a simple yet efficient ensemble learning framework for Vietnamese scene text spotting. Leveraging the power of ensemble learning, which combines multiple models to yield more accurate predictions, our approach aims to significantly enhance the performance of scene text spotting in challenging urban settings. Through experimental evaluations on the VinText dataset, our proposed method achieves a significant improvement in accuracy compared to existing methods with an impressive accuracy of 5%. These results unequivocally demonstrate the efficacy of ensemble learning in the context of Vietnamese scene text spotting in urban environments, highlighting its potential for real world applications, such as text detection and recognition in urban signage, advertisements, and various text-rich urban scenes.
Abstract:Creating thematic collections in industries demands innovative designs and cohesive concepts. Designers may face challenges in maintaining thematic consistency when drawing inspiration from existing objects, landscapes, or artifacts. While AI-powered graphic design tools offer help, they often fail to generate cohesive sets based on specific thematic concepts. In response, we introduce iCONTRA, an interactive CONcept TRAnsfer system. With a user-friendly interface, iCONTRA enables both experienced designers and novices to effortlessly explore creative design concepts and efficiently generate thematic collections. We also propose a zero-shot image editing algorithm, eliminating the need for fine-tuning models, which gradually integrates information from initial objects, ensuring consistency in the generation process without influencing the background. A pilot study suggests iCONTRA's potential to reduce designers' efforts. Experimental results demonstrate its effectiveness in producing consistent and high-quality object concept transfers. iCONTRA stands as a promising tool for innovation and creative exploration in thematic collection design. The source code will be available at: https://github.com/vdkhoi20/iCONTRA.
Abstract:Drawing is an art that enables people to express their imagination and emotions. However, individuals usually face challenges in drawing, especially when translating conceptual ideas into visually coherent representations and bridging the gap between mental visualization and practical execution. In response, we propose ARtVista - a novel system integrating AR and generative AI technologies. ARtVista not only recommends reference images aligned with users' abstract ideas and generates sketches for users to draw but also goes beyond, crafting vibrant paintings in various painting styles. ARtVista also offers users an alternative approach to create striking paintings by simulating the paint-by-number concept on reference images, empowering users to create visually stunning artwork devoid of the necessity for advanced drawing skills. We perform a pilot study and reveal positive feedback on its usability, emphasizing its effectiveness in visualizing user ideas and aiding the painting process to achieve stunning pictures without requiring advanced drawing skills. The source code will be available at https://github.com/htrvu/ARtVista.
Abstract:Whole-slide image (WSI) analysis plays a crucial role in cancer diagnosis and treatment. In addressing the demands of this critical task, self-supervised learning (SSL) methods have emerged as a valuable resource, leveraging their efficiency in circumventing the need for a large number of annotations, which can be both costly and time-consuming to deploy supervised methods. Nevertheless, patch-wise representation may exhibit instability in performance, primarily due to class imbalances stemming from patch selection within WSIs. In this paper, we introduce Nearby Patch Contrastive Learning (NearbyPatchCL), a novel self-supervised learning method that leverages nearby patches as positive samples and a decoupled contrastive loss for robust representation learning. Our method demonstrates a tangible enhancement in performance for downstream tasks involving patch-level multi-class classification. Additionally, we curate a new dataset derived from WSIs sourced from the Canine Cutaneous Cancer Histology, thus establishing a benchmark for the rigorous evaluation of patch-level multi-class classification methodologies. Intensive experiments show that our method significantly outperforms the supervised baseline and state-of-the-art SSL methods with top-1 classification accuracy of 87.56%. Our method also achieves comparable results while utilizing a mere 1% of labeled data, a stark contrast to the 100% labeled data requirement of other approaches. Source code: https://github.com/nvtien457/NearbyPatchCL
Abstract:For a long time, images have proved perfect at both storing and conveying rich semantics, especially human emotions. A lot of research has been conducted to provide machines with the ability to recognize emotions in photos of people. Previous methods mostly focus on facial expressions but fail to consider the scene context, meanwhile scene context plays an important role in predicting emotions, leading to more accurate results. In addition, Valence-Arousal-Dominance (VAD) values offer a more precise quantitative understanding of continuous emotions, yet there has been less emphasis on predicting them compared to discrete emotional categories. In this paper, we present a novel Multi-Branch Network (MBN), which utilizes various source information, including faces, bodies, and scene contexts to predict both discrete and continuous emotions in an image. Experimental results on EMOTIC dataset, which contains large-scale images of people in unconstrained situations labeled with 26 discrete categories of emotions and VAD values, show that our proposed method significantly outperforms state-of-the-art methods with 28.4% in mAP and 0.93 in MAE. The results highlight the importance of utilizing multiple contextual information in emotion prediction and illustrate the potential of our proposed method in a wide range of applications, such as effective computing, human-computer interaction, and social robotics. Source code: https://github.com/BaoNinh2808/Multi-Branch-Network-for-Imagery-Emotion-Prediction
Abstract:Camouflaged object detection (COD) and camouflaged instance segmentation (CIS) aim to recognize and segment objects that are blended into their surroundings, respectively. While several deep neural network models have been proposed to tackle those tasks, augmentation methods for COD and CIS have not been thoroughly explored. Augmentation strategies can help improve the performance of models by increasing the size and diversity of the training data and exposing the model to a wider range of variations in the data. Besides, we aim to automatically learn transformations that help to reveal the underlying structure of camouflaged objects and allow the model to learn to better identify and segment camouflaged objects. To achieve this, we propose a learnable augmentation method in the frequency domain for COD and CIS via Fourier transform approach, dubbed CamoFourier. Our method leverages a conditional generative adversarial network and cross-attention mechanism to generate a reference image and an adaptive hybrid swapping with parameters to mix the low-frequency component of the reference image and the high-frequency component of the input image. This approach aims to make camouflaged objects more visible for detection and segmentation models. Without bells and whistles, our proposed augmentation method boosts the performance of camouflaged object detectors and camouflaged instance segmenters by large margins.
Abstract:The fashion e-commerce industry has witnessed significant growth in recent years, prompting exploring image-based virtual try-on techniques to incorporate Augmented Reality (AR) experiences into online shopping platforms. However, existing research has primarily overlooked a crucial aspect - the runtime of the underlying machine-learning model. While existing methods prioritize enhancing output quality, they often disregard the execution time, which restricts their applications on a limited range of devices. To address this gap, we propose Distilled Mobile Real-time Virtual Try-On (DM-VTON), a novel virtual try-on framework designed to achieve simplicity and efficiency. Our approach is based on a knowledge distillation scheme that leverages a strong Teacher network as supervision to guide a Student network without relying on human parsing. Notably, we introduce an efficient Mobile Generative Module within the Student network, significantly reducing the runtime while ensuring high-quality output. Additionally, we propose Virtual Try-on-guided Pose for Data Synthesis to address the limited pose variation observed in training images. Experimental results show that the proposed method can achieve 40 frames per second on a single Nvidia Tesla T4 GPU and only take up 37 MB of memory while producing almost the same output quality as other state-of-the-art methods. DM-VTON stands poised to facilitate the advancement of real-time AR applications, in addition to the generation of lifelike attired human figures tailored for diverse specialized training tasks. https://sites.google.com/view/ltnghia/research/DMVTON