Abstract:Data augmentation is a widely used technique for creating training data for tasks that require labeled data, such as semantic segmentation. This method benefits pixel-wise annotation tasks requiring much effort and intensive labor. Traditional data augmentation methods involve simple transformations like rotations and flips to create new images from existing ones. However, these new images may lack diversity along the main semantic axes in the data and not change high-level semantic properties. To address this issue, generative models have emerged as an effective solution for augmenting data by generating synthetic images. Controllable generative models offer a way to augment data for semantic segmentation tasks using a prompt and visual reference from the original image. However, using these models directly presents challenges, such as creating an effective prompt and visual reference to generate a synthetic image that accurately reflects the content and structure of the original. In this work, we introduce an effective data augmentation method for semantic segmentation using the Controllable Diffusion Model. Our proposed method includes efficient prompt generation using Class-Prompt Appending and Visual Prior Combination to enhance attention to labeled classes in real images. These techniques allow us to generate images that accurately depict segmented classes in the real image. In addition, we employ the class balancing algorithm to ensure efficiency when merging the synthetic and original images to generate balanced data for the training dataset. We evaluated our method on the PASCAL VOC datasets and found it highly effective for synthesizing images in semantic segmentation.
Abstract:The quest for robust Person re-identification (Re-ID) systems capable of accurately identifying subjects across diverse scenarios remains a formidable challenge in surveillance and security applications. This study presents a novel methodology that significantly enhances Person Re-Identification (Re-ID) by integrating Uncertainty Feature Fusion (UFFM) with Wise Distance Aggregation (WDA). Tested on benchmark datasets - Market-1501, DukeMTMC-ReID, and MSMT17 - our approach demonstrates substantial improvements in Rank-1 accuracy and mean Average Precision (mAP). Specifically, UFFM capitalizes on the power of feature synthesis from multiple images to overcome the limitations imposed by the variability of subject appearances across different views. WDA further refines the process by intelligently aggregating similarity metrics, thereby enhancing the system's ability to discern subtle but critical differences between subjects. The empirical results affirm the superiority of our method over existing approaches, achieving new performance benchmarks across all evaluated datasets. Code is available on Github.
Abstract:Semantic segmentation is crucial for autonomous driving, particularly for Drivable Area and Lane Segmentation, ensuring safety and navigation. To address the high computational costs of current state-of-the-art (SOTA) models, this paper introduces TwinLiteNetPlus (TwinLiteNet$^+$), a model adept at balancing efficiency and accuracy. TwinLiteNet$^+$ incorporates standard and depth-wise separable dilated convolutions, reducing complexity while maintaining high accuracy. It is available in four configurations, from the robust 1.94 million-parameter TwinLiteNet$^+_{\text{Large}}$ to the ultra-compact 34K-parameter TwinLiteNet$^+_{\text{Nano}}$. Notably, TwinLiteNet$^+_{\text{Large}}$ attains a 92.9\% mIoU for Drivable Area Segmentation and a 34.2\% IoU for Lane Segmentation. These results notably outperform those of current SOTA models while requiring a computational cost that is approximately 11 times lower in terms of Floating Point Operations (FLOPs) compared to the existing SOTA model. Extensively tested on various embedded devices, TwinLiteNet$^+$ demonstrates promising latency and power efficiency, underscoring its suitability for real-world autonomous vehicle applications.
Abstract:Large language models (LLMs), such as GPT-4, PaLM, and LLaMa, have been shown to achieve remarkable performance across a variety of natural language tasks. Recent advancements in instruction tuning bring LLMs with ability in following user's instructions and producing human-like responses. However, the high costs associated with training and implementing LLMs pose challenges to academic research. Furthermore, the availability of pretrained LLMs and instruction-tune datasets for Vietnamese language is limited. To tackle these concerns, we leverage large-scale instruction-following datasets from open-source projects, namely Alpaca, GPT4All, and Chat-Doctor, which cover general domain and specific medical domain. To the best of our knowledge, these are the first instructional dataset for Vietnamese. Subsequently, we utilize parameter-efficient tuning through Low-Rank Adaptation (LoRA) on two open LLMs: Bloomz (Multilingual) and GPTJ-6B (Vietnamese), resulting four models: Bloomz-Chat, Bloomz-Doctor, GPTJ-Chat, GPTJ-Doctor.Finally, we assess the effectiveness of our methodology on a per-sample basis, taking into consideration the helpfulness, relevance, accuracy, level of detail in their responses. This evaluation process entails the utilization of GPT-4 as an automated scoring mechanism. Despite utilizing a low-cost setup, our method demonstrates about 20-30\% improvement over the original models in our evaluation tasks.
Abstract:Few-shot object detection aims to simultaneously localize and classify the objects in an image with limited training samples. However, most existing few-shot object detection methods focus on extracting the features of a few samples of novel classes that lack diversity. Hence, they may not be sufficient to capture the data distribution. To address that limitation, in this paper, we propose a novel approach in which we train a generator to generate synthetic data for novel classes. Still, directly training a generator on the novel class is not effective due to the lack of novel data. To overcome that issue, we leverage the large-scale dataset of base classes. Our overarching goal is to train a generator that captures the data variations of the base dataset. We then transform the captured variations into novel classes by generating synthetic data with the trained generator. To encourage the generator to capture data variations on base classes, we propose to train the generator with an optimal transport loss that minimizes the optimal transport distance between the distributions of real and synthetic data. Extensive experiments on two benchmark datasets demonstrate that the proposed method outperforms the state of the art. Source code will be available.
Abstract:Camouflaged object detection and segmentation is a new and challenging research topic in computer vision. There is a serious issue of lacking data of camouflaged objects such as camouflaged animals in natural scenes. In this paper, we address the problem of few-shot learning for camouflaged object detection and segmentation. To this end, we first collect a new dataset, CAMO-FS, for the benchmark. We then propose a novel method to efficiently detect and segment the camouflaged objects in the images. In particular, we introduce the instance triplet loss and the instance memory storage. The extensive experiments demonstrated that our proposed method achieves state-of-the-art performance on the newly collected dataset.
Abstract:Few-shot learning is proposed to tackle the problem of scarce training data in novel classes. However, prior works in instance-level few-shot learning have paid less attention to effectively utilizing the relationship between categories. In this paper, we exploit the hierarchical information to leverage discriminative and relevant features of base classes to effectively classify novel objects. These features are extracted from abundant data of base classes, which could be utilized to reasonably describe classes with scarce data. Specifically, we propose a novel superclass approach that automatically creates a hierarchy considering base and novel classes as fine-grained classes for few-shot instance segmentation (FSIS). Based on the hierarchical information, we design a novel framework called Soft Multiple Superclass (SMS) to extract relevant features or characteristics of classes in the same superclass. A new class assigned to the superclass is easier to classify by leveraging these relevant features. Besides, in order to effectively train the hierarchy-based-detector in FSIS, we apply the label refinement to further describe the associations between fine-grained classes. The extensive experiments demonstrate the effectiveness of our method on FSIS benchmarks. Code is available online.
Abstract:The retrieval of 3D objects has gained significant importance in recent years due to its broad range of applications in computer vision, computer graphics, virtual reality, and augmented reality. However, the retrieval of 3D objects presents significant challenges due to the intricate nature of 3D models, which can vary in shape, size, and texture, and have numerous polygons and vertices. To this end, we introduce a novel SHREC challenge track that focuses on retrieving relevant 3D animal models from a dataset using sketch queries and expedites accessing 3D models through available sketches. Furthermore, a new dataset named ANIMAR was constructed in this study, comprising a collection of 711 unique 3D animal models and 140 corresponding sketch queries. Our contest requires participants to retrieve 3D models based on complex and detailed sketches. We receive satisfactory results from eight teams and 204 runs. Although further improvement is necessary, the proposed task has the potential to incentivize additional research in the domain of 3D object retrieval, potentially yielding benefits for a wide range of applications. We also provide insights into potential areas of future research, such as improving techniques for feature extraction and matching, and creating more diverse datasets to evaluate retrieval performance.
Abstract:3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.