Abstract:We propose PoseGaussian, a pose-guided Gaussian Splatting framework for high-fidelity human novel view synthesis. Human body pose serves a dual purpose in our design: as a structural prior, it is fused with a color encoder to refine depth estimation; as a temporal cue, it is processed by a dedicated pose encoder to enhance temporal consistency across frames. These components are integrated into a fully differentiable, end-to-end trainable pipeline. Unlike prior works that use pose only as a condition or for warping, PoseGaussian embeds pose signals into both geometric and temporal stages to improve robustness and generalization. It is specifically designed to address challenges inherent in dynamic human scenes, such as articulated motion and severe self-occlusion. Notably, our framework achieves real-time rendering at 100 FPS, maintaining the efficiency of standard Gaussian Splatting pipelines. We validate our approach on ZJU-MoCap, THuman2.0, and in-house datasets, demonstrating state-of-the-art performance in perceptual quality and structural accuracy (PSNR 30.86, SSIM 0.979, LPIPS 0.028).
Abstract:Recent advancements in Generative Artificial Intelligence (GenAI) have significantly enhanced the capabilities of both image generation and editing. However, current approaches often treat these tasks separately, leading to inefficiencies and challenges in maintaining spatial consistency and semantic coherence between generated content and edits. Moreover, a major obstacle is the lack of structured control over object relationships and spatial arrangements. Scene graph-based methods, which represent objects and their interrelationships in a structured format, offer a solution by providing greater control over composition and interactions in both image generation and editing. To address this, we introduce SimGraph, a unified framework that integrates scene graph-based image generation and editing, enabling precise control over object interactions, layouts, and spatial coherence. In particular, our framework integrates token-based generation and diffusion-based editing within a single scene graph-driven model, ensuring high-quality and consistent results. Through extensive experiments, we empirically demonstrate that our approach outperforms existing state-of-the-art methods.
Abstract:State-of-the-art text-based image editing models often struggle to balance background preservation with semantic consistency, frequently resulting either in the synthesis of entirely new images or in outputs that fail to realize the intended edits. In contrast, scene graph-based image editing addresses this limitation by providing a structured representation of semantic entities and their relations, thereby offering improved controllability. However, existing scene graph editing methods typically depend on model fine-tuning, which incurs high computational cost and limits scalability. To this end, we introduce VENUS (Visual Editing with Noise inversion Using Scene graphs), a training-free framework for scene graph-guided image editing. Specifically, VENUS employs a split prompt conditioning strategy that disentangles the target object of the edit from its background context, while simultaneously leveraging noise inversion to preserve fidelity in unedited regions. Moreover, our proposed approach integrates scene graphs extracted from multimodal large language models with diffusion backbones, without requiring any additional training. Empirically, VENUS substantially improves both background preservation and semantic alignment on PIE-Bench, increasing PSNR from 22.45 to 24.80, SSIM from 0.79 to 0.84, and reducing LPIPS from 0.100 to 0.070 relative to the state-of-the-art scene graph editing model (SGEdit). In addition, VENUS enhances semantic consistency as measured by CLIP similarity (24.97 vs. 24.19). On EditVal, VENUS achieves the highest fidelity with a 0.87 DINO score and, crucially, reduces per-image runtime from 6-10 minutes to only 20-30 seconds. Beyond scene graph-based editing, VENUS also surpasses strong text-based editing baselines such as LEDIT++ and P2P+DirInv, thereby demonstrating consistent improvements across both paradigms.
Abstract:Key Opinion Leader (KOL) play a crucial role in modern marketing by shaping consumer perceptions and enhancing brand credibility. However, collaborating with human KOLs often involves high costs and logistical challenges. To address this, we present GenKOL, an interactive system that empowers marketing professionals to efficiently generate high-quality virtual KOL images using generative AI. GenKOL enables users to dynamically compose promotional visuals through an intuitive interface that integrates multiple AI capabilities, including garment generation, makeup transfer, background synthesis, and hair editing. These capabilities are implemented as modular, interchangeable services that can be deployed flexibly on local machines or in the cloud. This modular architecture ensures adaptability across diverse use cases and computational environments. Our system can significantly streamline the production of branded content, lowering costs and accelerating marketing workflows through scalable virtual KOL creation.
Abstract:The Event-Enriched Image Analysis (EVENTA) Grand Challenge, hosted at ACM Multimedia 2025, introduces the first large-scale benchmark for event-level multimodal understanding. Traditional captioning and retrieval tasks largely focus on surface-level recognition of people, objects, and scenes, often overlooking the contextual and semantic dimensions that define real-world events. EVENTA addresses this gap by integrating contextual, temporal, and semantic information to capture the who, when, where, what, and why behind an image. Built upon the OpenEvents V1 dataset, the challenge features two tracks: Event-Enriched Image Retrieval and Captioning, and Event-Based Image Retrieval. A total of 45 teams from six countries participated, with evaluation conducted through Public and Private Test phases to ensure fairness and reproducibility. The top three teams were invited to present their solutions at ACM Multimedia 2025. EVENTA establishes a foundation for context-aware, narrative-driven multimedia AI, with applications in journalism, media analysis, cultural archiving, and accessibility. Further details about the challenge are available at the official homepage: https://ltnghia.github.io/eventa/eventa-2025.
Abstract:State-of-the-art text-to-image models excel at photorealistic rendering but often struggle to capture the layout and object relationships implied by complex prompts. Scene graphs provide a natural structural prior, yet previous graph-guided approaches have typically relied on heavy GAN or diffusion pipelines, which lag behind modern autoregressive architectures in both speed and fidelity. We introduce SATURN (Structured Arrangement of Triplets for Unified Rendering Networks), a lightweight extension to VAR-CLIP that translates a scene graph into a salience-ordered token sequence, enabling a frozen CLIP-VQ-VAE backbone to interpret graph structure while fine-tuning only the VAR transformer. On the Visual Genome dataset, SATURN reduces FID from 56.45% to 21.62% and increases the Inception Score from 16.03 to 24.78, outperforming prior methods such as SG2IM and SGDiff without requiring extra modules or multi-stage training. Qualitative results further confirm improvements in object count fidelity and spatial relation accuracy, showing that SATURN effectively combines structural awareness with state-of-the-art autoregressive fidelity.
Abstract:Recent 3D retrieval systems are typically designed for simple, controlled scenarios, such as identifying an object from a cropped image or a brief description. However, real-world scenarios are more complex, often requiring the recognition of an object in a cluttered scene based on a vague, free-form description. To this end, we present ROOMELSA, a new benchmark designed to evaluate a system's ability to interpret natural language. Specifically, ROOMELSA attends to a specific region within a panoramic room image and accurately retrieves the corresponding 3D model from a large database. In addition, ROOMELSA includes over 1,600 apartment scenes, nearly 5,200 rooms, and more than 44,000 targeted queries. Empirically, while coarse object retrieval is largely solved, only one top-performing model consistently ranked the correct match first across nearly all test cases. Notably, a lightweight CLIP-based model also performed well, although it struggled with subtle variations in materials, part structures, and contextual cues, resulting in occasional errors. These findings highlight the importance of tightly integrating visual and language understanding. By bridging the gap between scene-level grounding and fine-grained 3D retrieval, ROOMELSA establishes a new benchmark for advancing robust, real-world 3D recognition systems.
Abstract:Automated analysis of endoscopic imagery is a critical yet underdeveloped component of ENT (ear, nose, and throat) care, hindered by variability in devices and operators, subtle and localized findings, and fine-grained distinctions such as laterality and vocal-fold state. In addition to classification, clinicians require reliable retrieval of similar cases, both visually and through concise textual descriptions. These capabilities are rarely supported by existing public benchmarks. To this end, we introduce ENTRep, the ACM Multimedia 2025 Grand Challenge on ENT endoscopy analysis, which integrates fine-grained anatomical classification with image-to-image and text-to-image retrieval under bilingual (Vietnamese and English) clinical supervision. Specifically, the dataset comprises expert-annotated images, labeled for anatomical region and normal or abnormal status, and accompanied by dual-language narrative descriptions. In addition, we define three benchmark tasks, standardize the submission protocol, and evaluate performance on public and private test splits using server-side scoring. Moreover, we report results from the top-performing teams and provide an insight discussion.
Abstract:Humans possess a unique ability to perceive meaningful patterns in ambiguous stimuli, a cognitive phenomenon known as pareidolia. This paper introduces Shape2Animal framework to mimics this imaginative capacity by reinterpreting natural object silhouettes, such as clouds, stones, or flames, as plausible animal forms. Our automated framework first performs open-vocabulary segmentation to extract object silhouette and interprets semantically appropriate animal concepts using vision-language models. It then synthesizes an animal image that conforms to the input shape, leveraging text-to-image diffusion model and seamlessly blends it into the original scene to generate visually coherent and spatially consistent compositions. We evaluated Shape2Animal on a diverse set of real-world inputs, demonstrating its robustness and creative potential. Our Shape2Animal can offer new opportunities for visual storytelling, educational content, digital art, and interactive media design. Our project page is here: https://shape2image.github.io
Abstract:While the efficacy of deep learning models heavily relies on data, gathering and annotating data for specific tasks, particularly when addressing novel or sensitive subjects lacking relevant datasets, poses significant time and resource challenges. In response to this, we propose a novel Automated Image Recognition (AIR) framework that harnesses the power of generative AI. AIR empowers end-users to synthesize high-quality, pre-annotated datasets, eliminating the necessity for manual labeling. It also automatically trains deep learning models on the generated datasets with robust image recognition performance. Our framework includes two main data synthesis processes, AIR-Gen and AIR-Aug. The AIR-Gen enables end-users to seamlessly generate datasets tailored to their specifications. To improve image quality, we introduce a novel automated prompt engineering module that leverages the capabilities of large language models. We also introduce a distribution adjustment algorithm to eliminate duplicates and outliers, enhancing the robustness and reliability of generated datasets. On the other hand, the AIR-Aug enhances a given dataset, thereby improving the performance of deep classifier models. AIR-Aug is particularly beneficial when users have limited data for specific tasks. Through comprehensive experiments, we demonstrated the efficacy of our generated data in training deep learning models and showcased the system's potential to provide image recognition models for a wide range of objects. We also conducted a user study that achieved an impressive score of 4.4 out of 5.0, underscoring the AI community's positive perception of AIR.