Abstract:Drawing is an art that enables people to express their imagination and emotions. However, individuals usually face challenges in drawing, especially when translating conceptual ideas into visually coherent representations and bridging the gap between mental visualization and practical execution. In response, we propose ARtVista - a novel system integrating AR and generative AI technologies. ARtVista not only recommends reference images aligned with users' abstract ideas and generates sketches for users to draw but also goes beyond, crafting vibrant paintings in various painting styles. ARtVista also offers users an alternative approach to create striking paintings by simulating the paint-by-number concept on reference images, empowering users to create visually stunning artwork devoid of the necessity for advanced drawing skills. We perform a pilot study and reveal positive feedback on its usability, emphasizing its effectiveness in visualizing user ideas and aiding the painting process to achieve stunning pictures without requiring advanced drawing skills. The source code will be available at https://github.com/htrvu/ARtVista.
Abstract:Creating thematic collections in industries demands innovative designs and cohesive concepts. Designers may face challenges in maintaining thematic consistency when drawing inspiration from existing objects, landscapes, or artifacts. While AI-powered graphic design tools offer help, they often fail to generate cohesive sets based on specific thematic concepts. In response, we introduce iCONTRA, an interactive CONcept TRAnsfer system. With a user-friendly interface, iCONTRA enables both experienced designers and novices to effortlessly explore creative design concepts and efficiently generate thematic collections. We also propose a zero-shot image editing algorithm, eliminating the need for fine-tuning models, which gradually integrates information from initial objects, ensuring consistency in the generation process without influencing the background. A pilot study suggests iCONTRA's potential to reduce designers' efforts. Experimental results demonstrate its effectiveness in producing consistent and high-quality object concept transfers. iCONTRA stands as a promising tool for innovation and creative exploration in thematic collection design. The source code will be available at: https://github.com/vdkhoi20/iCONTRA.
Abstract:Few-shot object detection aims to simultaneously localize and classify the objects in an image with limited training samples. However, most existing few-shot object detection methods focus on extracting the features of a few samples of novel classes that lack diversity. Hence, they may not be sufficient to capture the data distribution. To address that limitation, in this paper, we propose a novel approach in which we train a generator to generate synthetic data for novel classes. Still, directly training a generator on the novel class is not effective due to the lack of novel data. To overcome that issue, we leverage the large-scale dataset of base classes. Our overarching goal is to train a generator that captures the data variations of the base dataset. We then transform the captured variations into novel classes by generating synthetic data with the trained generator. To encourage the generator to capture data variations on base classes, we propose to train the generator with an optimal transport loss that minimizes the optimal transport distance between the distributions of real and synthetic data. Extensive experiments on two benchmark datasets demonstrate that the proposed method outperforms the state of the art. Source code will be available.
Abstract:Camouflaged object detection (COD) and camouflaged instance segmentation (CIS) aim to recognize and segment objects that are blended into their surroundings, respectively. While several deep neural network models have been proposed to tackle those tasks, augmentation methods for COD and CIS have not been thoroughly explored. Augmentation strategies can help improve the performance of models by increasing the size and diversity of the training data and exposing the model to a wider range of variations in the data. Besides, we aim to automatically learn transformations that help to reveal the underlying structure of camouflaged objects and allow the model to learn to better identify and segment camouflaged objects. To achieve this, we propose a learnable augmentation method in the frequency domain for COD and CIS via Fourier transform approach, dubbed CamoFourier. Our method leverages a conditional generative adversarial network and cross-attention mechanism to generate a reference image and an adaptive hybrid swapping with parameters to mix the low-frequency component of the reference image and the high-frequency component of the input image. This approach aims to make camouflaged objects more visible for detection and segmentation models. Without bells and whistles, our proposed augmentation method boosts the performance of camouflaged object detectors and camouflaged instance segmenters by large margins.
Abstract:The fashion e-commerce industry has witnessed significant growth in recent years, prompting exploring image-based virtual try-on techniques to incorporate Augmented Reality (AR) experiences into online shopping platforms. However, existing research has primarily overlooked a crucial aspect - the runtime of the underlying machine-learning model. While existing methods prioritize enhancing output quality, they often disregard the execution time, which restricts their applications on a limited range of devices. To address this gap, we propose Distilled Mobile Real-time Virtual Try-On (DM-VTON), a novel virtual try-on framework designed to achieve simplicity and efficiency. Our approach is based on a knowledge distillation scheme that leverages a strong Teacher network as supervision to guide a Student network without relying on human parsing. Notably, we introduce an efficient Mobile Generative Module within the Student network, significantly reducing the runtime while ensuring high-quality output. Additionally, we propose Virtual Try-on-guided Pose for Data Synthesis to address the limited pose variation observed in training images. Experimental results show that the proposed method can achieve 40 frames per second on a single Nvidia Tesla T4 GPU and only take up 37 MB of memory while producing almost the same output quality as other state-of-the-art methods. DM-VTON stands poised to facilitate the advancement of real-time AR applications, in addition to the generation of lifelike attired human figures tailored for diverse specialized training tasks. https://sites.google.com/view/ltnghia/research/DMVTON
Abstract:Interior design is crucial in creating aesthetically pleasing and functional indoor spaces. However, developing and editing interior design concepts requires significant time and expertise. We propose Virtual Interior DESign (VIDES) system in response to this challenge. Leveraging cutting-edge technology in generative AI, our system can assist users in generating and editing indoor scene concepts quickly, given user text description and visual guidance. Using both visual guidance and language as the conditional inputs significantly enhances the accuracy and coherence of the generated scenes, resulting in visually appealing designs. Through extensive experimentation, we demonstrate the effectiveness of VIDES in developing new indoor concepts, changing indoor styles, and replacing and removing interior objects. The system successfully captures the essence of users' descriptions while providing flexibility for customization. Consequently, this system can potentially reduce the entry barrier for indoor design, making it more accessible to users with limited technical skills and reducing the time required to create high-quality images. Individuals who have a background in design can now easily communicate their ideas visually and effectively present their design concepts. https://sites.google.com/view/ltnghia/research/VIDES
Abstract:Camouflaged object detection and segmentation is a new and challenging research topic in computer vision. There is a serious issue of lacking data of camouflaged objects such as camouflaged animals in natural scenes. In this paper, we address the problem of few-shot learning for camouflaged object detection and segmentation. To this end, we first collect a new dataset, CAMO-FS, for the benchmark. We then propose a novel method to efficiently detect and segment the camouflaged objects in the images. In particular, we introduce the instance triplet loss and the instance memory storage. The extensive experiments demonstrated that our proposed method achieves state-of-the-art performance on the newly collected dataset.
Abstract:Few-shot learning is proposed to tackle the problem of scarce training data in novel classes. However, prior works in instance-level few-shot learning have paid less attention to effectively utilizing the relationship between categories. In this paper, we exploit the hierarchical information to leverage discriminative and relevant features of base classes to effectively classify novel objects. These features are extracted from abundant data of base classes, which could be utilized to reasonably describe classes with scarce data. Specifically, we propose a novel superclass approach that automatically creates a hierarchy considering base and novel classes as fine-grained classes for few-shot instance segmentation (FSIS). Based on the hierarchical information, we design a novel framework called Soft Multiple Superclass (SMS) to extract relevant features or characteristics of classes in the same superclass. A new class assigned to the superclass is easier to classify by leveraging these relevant features. Besides, in order to effectively train the hierarchy-based-detector in FSIS, we apply the label refinement to further describe the associations between fine-grained classes. The extensive experiments demonstrate the effectiveness of our method on FSIS benchmarks. Code is available online.
Abstract:The retrieval of 3D objects has gained significant importance in recent years due to its broad range of applications in computer vision, computer graphics, virtual reality, and augmented reality. However, the retrieval of 3D objects presents significant challenges due to the intricate nature of 3D models, which can vary in shape, size, and texture, and have numerous polygons and vertices. To this end, we introduce a novel SHREC challenge track that focuses on retrieving relevant 3D animal models from a dataset using sketch queries and expedites accessing 3D models through available sketches. Furthermore, a new dataset named ANIMAR was constructed in this study, comprising a collection of 711 unique 3D animal models and 140 corresponding sketch queries. Our contest requires participants to retrieve 3D models based on complex and detailed sketches. We receive satisfactory results from eight teams and 204 runs. Although further improvement is necessary, the proposed task has the potential to incentivize additional research in the domain of 3D object retrieval, potentially yielding benefits for a wide range of applications. We also provide insights into potential areas of future research, such as improving techniques for feature extraction and matching, and creating more diverse datasets to evaluate retrieval performance.
Abstract:Few-shot instance segmentation extends the few-shot learning paradigm to the instance segmentation task, which tries to segment instance objects from a query image with a few annotated examples of novel categories. Conventional approaches have attempted to address the task via prototype learning, known as point estimation. However, this mechanism is susceptible to noise and suffers from bias due to a significant scarcity of data. To overcome the disadvantages of the point estimation mechanism, we propose a novel approach, dubbed MaskDiff, which models the underlying conditional distribution of a binary mask, which is conditioned on an object region and $K$-shot information. Inspired by augmentation approaches that perturb data with Gaussian noise for populating low data density regions, we model the mask distribution with a diffusion probabilistic model. In addition, we propose to utilize classifier-free guided mask sampling to integrate category information into the binary mask generation process. Without bells and whistles, our proposed method consistently outperforms state-of-the-art methods on both base and novel classes of the COCO dataset while simultaneously being more stable than existing methods.