Abstract:Recent few-shot object detection (FSOD) methods have focused on augmenting synthetic samples for novel classes, show promising results to the rise of diffusion models. However, the diversity of such datasets is often limited in representativeness because they lack awareness of typical and hard samples, especially in the context of foreground and background relationships. To tackle this issue, we propose a Multi-Perspective Data Augmentation (MPAD) framework. In terms of foreground-foreground relationships, we propose in-context learning for object synthesis (ICOS) with bounding box adjustments to enhance the detail and spatial information of synthetic samples. Inspired by the large margin principle, support samples play a vital role in defining class boundaries. Therefore, we design a Harmonic Prompt Aggregation Scheduler (HPAS) to mix prompt embeddings at each time step of the generation process in diffusion models, producing hard novel samples. For foreground-background relationships, we introduce a Background Proposal method (BAP) to sample typical and hard backgrounds. Extensive experiments on multiple FSOD benchmarks demonstrate the effectiveness of our approach. Our framework significantly outperforms traditional methods, achieving an average increase of $17.5\%$ in nAP50 over the baseline on PASCAL VOC. Code is available at https://github.com/nvakhoa/MPAD.
Abstract:Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR), especially where training and testing data reside in different domains. The efficacy of existing UDA approaches tends to degrade when there is a large gap between the source and target domains. To deal with this problem, gradually shifting or progressively learning to shift from domain to domain is the key issue. In this paper, we introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process. The objective is to partition the training data into subsets so that the progressively self-trained model can adapt to gradual changes. We stratify the training data by evaluating the proximity of each data sample to both the source and target domains. We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples. Extensive experiments on benchmark scene-text datasets show that our approach significantly improves the performance of baseline (source-trained) STR models.
Abstract:Few-shot learning is proposed to tackle the problem of scarce training data in novel classes. However, prior works in instance-level few-shot learning have paid less attention to effectively utilizing the relationship between categories. In this paper, we exploit the hierarchical information to leverage discriminative and relevant features of base classes to effectively classify novel objects. These features are extracted from abundant data of base classes, which could be utilized to reasonably describe classes with scarce data. Specifically, we propose a novel superclass approach that automatically creates a hierarchy considering base and novel classes as fine-grained classes for few-shot instance segmentation (FSIS). Based on the hierarchical information, we design a novel framework called Soft Multiple Superclass (SMS) to extract relevant features or characteristics of classes in the same superclass. A new class assigned to the superclass is easier to classify by leveraging these relevant features. Besides, in order to effectively train the hierarchy-based-detector in FSIS, we apply the label refinement to further describe the associations between fine-grained classes. The extensive experiments demonstrate the effectiveness of our method on FSIS benchmarks. Code is available online.
Abstract:Camouflaged object detection and segmentation is a new and challenging research topic in computer vision. There is a serious issue of lacking data of camouflaged objects such as camouflaged animals in natural scenes. In this paper, we address the problem of few-shot learning for camouflaged object detection and segmentation. To this end, we first collect a new dataset, CAMO-FS, for the benchmark. We then propose a novel method to efficiently detect and segment the camouflaged objects in the images. In particular, we introduce the instance triplet loss and the instance memory storage. The extensive experiments demonstrated that our proposed method achieves state-of-the-art performance on the newly collected dataset.