Data augmentation is a widely used technique for creating training data for tasks that require labeled data, such as semantic segmentation. This method benefits pixel-wise annotation tasks requiring much effort and intensive labor. Traditional data augmentation methods involve simple transformations like rotations and flips to create new images from existing ones. However, these new images may lack diversity along the main semantic axes in the data and not change high-level semantic properties. To address this issue, generative models have emerged as an effective solution for augmenting data by generating synthetic images. Controllable generative models offer a way to augment data for semantic segmentation tasks using a prompt and visual reference from the original image. However, using these models directly presents challenges, such as creating an effective prompt and visual reference to generate a synthetic image that accurately reflects the content and structure of the original. In this work, we introduce an effective data augmentation method for semantic segmentation using the Controllable Diffusion Model. Our proposed method includes efficient prompt generation using Class-Prompt Appending and Visual Prior Combination to enhance attention to labeled classes in real images. These techniques allow us to generate images that accurately depict segmented classes in the real image. In addition, we employ the class balancing algorithm to ensure efficiency when merging the synthetic and original images to generate balanced data for the training dataset. We evaluated our method on the PASCAL VOC datasets and found it highly effective for synthesizing images in semantic segmentation.