Abstract:As the deployment of large language models (LLMs) expands, there is an increasing demand for personalized LLMs. One method to personalize and guide the outputs of these models is by assigning a persona -- a role that describes the expected behavior of the LLM (e.g., a man, a woman, an engineer). This study investigates whether an LLM's understanding of social norms varies across assigned personas. Ideally, the perception of a social norm should remain consistent regardless of the persona, since acceptability of a social norm should be determined by the region the norm originates from, rather than by individual characteristics such as gender, body size, or race. A norm is universal within its cultural context. In our research, we tested 36 distinct personas from 12 sociodemographic categories (e.g., age, gender, beauty) across four different LLMs. We find that LLMs' cultural norm interpretation varies based on the persona used and the norm interpretation also varies within a sociodemographic category (e.g., a fat person and a thin person as in physical appearance group) where an LLM with the more socially desirable persona (e.g., a thin person) interprets social norms more accurately than with the less socially desirable persona (e.g., a fat person). We also discuss how different types of social biases may contribute to the results that we observe.
Abstract:This paper presents a simple yet efficient ensemble learning framework for Vietnamese scene text spotting. Leveraging the power of ensemble learning, which combines multiple models to yield more accurate predictions, our approach aims to significantly enhance the performance of scene text spotting in challenging urban settings. Through experimental evaluations on the VinText dataset, our proposed method achieves a significant improvement in accuracy compared to existing methods with an impressive accuracy of 5%. These results unequivocally demonstrate the efficacy of ensemble learning in the context of Vietnamese scene text spotting in urban environments, highlighting its potential for real world applications, such as text detection and recognition in urban signage, advertisements, and various text-rich urban scenes.
Abstract:The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Gaussian process to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.
Abstract:This research project aims to develop a real-time traffic sign detection system using the YOLOv5 architecture and deploy it for efficient traffic sign recognition during a drive in a suburban neighborhood. The project's primary objectives are to train the YOLOv5 model on a diverse dataset of traffic sign images and deploy the model on a suitable hardware platform capable of real-time inference. The project will involve collecting a comprehensive dataset of traffic sign images. By leveraging the trained YOLOv5 model, the system will detect and classify traffic signs from a real-time camera on a dashboard inside a vehicle. The performance of the deployed system will be evaluated based on its accuracy in detecting traffic signs, real-time processing speed, and overall reliability. During a case study in a suburban neighborhood, the system demonstrated a notable 96% accuracy in detecting traffic signs. This research's findings have the potential to improve road safety and traffic management by providing timely and accurate real-time information about traffic signs and can pave the way for further research into autonomous driving.
Abstract:Inverse medium scattering solvers generally reconstruct a single solution without an associated measure of uncertainty. This is true both for the classical iterative solvers and for the emerging deep learning methods. But ill-posedness and noise can make this single estimate inaccurate or misleading. While deep networks such as conditional normalizing flows can be used to sample posteriors in inverse problems, they often yield low-quality samples and uncertainty estimates. In this paper, we propose U-Flow, a Bayesian U-Net based on conditional normalizing flows, which generates high-quality posterior samples and estimates physically-meaningful uncertainty. We show that the proposed model significantly outperforms the recent normalizing flows in terms of posterior sample quality while having comparable performance with the U-Net in point estimation.
Abstract:We introduce MTet, the largest publicly available parallel corpus for English-Vietnamese translation. MTet consists of 4.2M high-quality training sentence pairs and a multi-domain test set refined by the Vietnamese research community. Combining with previous works on English-Vietnamese translation, we grow the existing parallel dataset to 6.2M sentence pairs. We also release the first pretrained model EnViT5 for English and Vietnamese languages. Combining both resources, our model significantly outperforms previous state-of-the-art results by up to 2 points in translation BLEU score, while being 1.6 times smaller.
Abstract:The pricing of housing properties is determined by a variety of factors. However, post-pandemic markets have experienced volatility in the Chicago suburb area, which have affected house prices greatly. In this study, analysis was done on the Naperville/Bolingbrook real estate market to predict property prices based on these housing attributes through machine learning models, and to evaluate the effectiveness of such models in a volatile market space. Gathering data from Redfin, a real estate website, sales data from 2018 up until the summer season of 2022 were collected for research. By analyzing these sales in this range of time, we can also look at the state of the housing market and identify trends in price. For modeling the data, the models used were linear regression, support vector regression, decision tree regression, random forest regression, and XGBoost regression. To analyze results, comparison was made on the MAE, RMSE, and R-squared values for each model. It was found that the XGBoost model performs the best in predicting house prices despite the additional volatility sponsored by post-pandemic conditions. After modeling, Shapley Values (SHAP) were used to evaluate the weights of the variables in constructing models.
Abstract:Implicit representation of shapes as level sets of multilayer perceptrons has recently flourished in different shape analysis, compression, and reconstruction tasks. In this paper, we introduce an implicit neural representation-based framework for solving the inverse obstacle scattering problem in a mesh-free fashion. We efficiently express the obstacle shape as the zero-level set of a signed distance function which is implicitly determined by a small number of network parameters. To solve the direct scattering problem, we implement the implicit boundary integral method. It uses projections of the grid points in the tubular neighborhood onto the boundary to compute the PDE solution instead of a grid-size-dependent extraction method of surface points such as Marching Cubes. The implicit representation conveniently handles the shape perturbation in the optimization process. To update the shape, we use PyTorch's automatic differentiation to backpropagate the loss function w.r.t. the network parameters, allowing us to avoid complex and error-prone manual derivation of the shape derivative. The proposed framework makes the inverse scattering problem more tractable with fewer parameters to optimize in comparison to the memory-inefficient grid-based approaches and outputs high-quality reconstruction results.
Abstract:We present ViT5, a pretrained Transformer-based encoder-decoder model for the Vietnamese language. With T5-style self-supervised pretraining, ViT5 is trained on a large corpus of high-quality and diverse Vietnamese texts. We benchmark ViT5 on two downstream text generation tasks, Abstractive Text Summarization and Named Entity Recognition. Although Abstractive Text Summarization has been widely studied for the English language thanks to its rich and large source of data, there has been minimal research into the same task in Vietnamese, a much lower resource language. In this work, we perform exhaustive experiments on both Vietnamese Abstractive Summarization and Named Entity Recognition, validating the performance of ViT5 against many other pretrained Transformer-based encoder-decoder models. Our experiments show that ViT5 significantly outperforms existing models and achieves state-of-the-art results on Vietnamese Text Summarization. On the task of Named Entity Recognition, ViT5 is competitive against previous best results from pretrained encoder-based Transformer models. Further analysis shows the importance of context length during the self-supervised pretraining on downstream performance across different settings.
Abstract:Text summarization is a challenging task within natural language processing that involves text generation from lengthy input sequences. While this task has been widely studied in English, there is very limited research on summarization for Vietnamese text. In this paper, we investigate the robustness of transformer-based encoder-decoder architectures for Vietnamese abstractive summarization. Leveraging transfer learning and self-supervised learning, we validate the performance of the methods on two Vietnamese datasets.