Abstract:Self-supervised stereo matching holds great promise for application and research due to its independence from expensive labeled data. However, direct self-supervised stereo matching paradigms based on photometric loss functions have consistently struggled with performance issues due to the occlusion challenge. The crux of the occlusion challenge lies in the fact that the positions of occluded pixels consistently align with the epipolar search direction defined by the input stereo images, leading to persistent information loss and erroneous feedback at fixed locations during self-supervised training. In this work, we propose a simple yet highly effective pseudo-stereo inputs strategy to address the core occlusion challenge. This strategy decouples the input and feedback images, compelling the network to probabilistically sample information from both sides of the occluding objects. As a result, the persistent lack of information in the aforementioned fixed occlusion areas is mitigated. Building upon this, we further address feedback conflicts and overfitting issues arising from the strategy. By integrating these components, our method achieves stable and significant performance improvements compared to existing methods. Quantitative experiments are conducted to evaluate the performance. Qualitative experiments further demonstrate accurate disparity inference even at occluded regions. These results demonstrate a significant advancement over previous methods in the field of direct self-supervised stereo matching based on photometric loss. The proposed pseudo-stereo inputs strategy, due to its simplicity and effectiveness, has the potential to serve as a new paradigm for direct self-supervised stereo matching. Code is available at https://github.com/qrzyang/Pseudo-Stereo.
Abstract:We propose a bearing health management framework leveraging large language models (BearLLM), a novel multimodal model that unifies multiple bearing-related tasks by processing user prompts and vibration signals. Specifically, we introduce a prior knowledge-enhanced unified vibration signal representation to handle various working conditions across multiple datasets. This involves adaptively sampling the vibration signals based on the sampling rate of the sensor, incorporating the frequency domain to unify input dimensions, and using a fault-free reference signal as an auxiliary input. To extract features from vibration signals, we first train a fault classification network, then convert and align the extracted features into word embedding, and finally concatenate these with text embedding as input to an LLM. To evaluate the performance of the proposed method, we constructed the first large-scale multimodal bearing health management (MBHM) dataset, including paired vibration signals and textual descriptions. With our unified vibration signal representation, BearLLM using one set of pre-trained weights achieves state-of-the-art performance on nine publicly available fault diagnosis benchmarks, outperforming specific methods designed for individual datasets. We provide a dataset, our model, and code to inspire future research on building more capable industrial multimodal models (https://github.com/hatton613/BearLLM).