Abstract:Trustworthiness is an essential prerequisite for the real-world application of large language models. In this paper, we focus on the trustworthiness of language models with respect to retrieval augmentation. Despite being supported with external evidence, retrieval-augmented generation still suffers from hallucinations, one primary cause of which is the conflict between contextual and parametric knowledge. We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge. Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence and disregards the interference of parametric knowledge. Specifically, we propose a reinforcement learning based algorithm Trustworthy-Alignment, theoretically and experimentally demonstrating large language models' capability of reaching a trustworthy status without explicit supervision on how to respond. Our work highlights the potential of large language models on exploring its intrinsic abilities by its own and expands the application scenarios of alignment from fulfilling human preference to creating trustworthy agents.
Abstract:Regular expression is important for many natural language processing tasks especially when used to deal with unstructured and semi-structured data. This work focuses on automatically generating regular expressions and proposes a novel genetic algorithm to deal with this problem. Different from the methods which generate regular expressions from character level, we first utilize byte pair encoder (BPE) to extract some frequent items, which are then used to construct regular expressions. The fitness function of our genetic algorithm contains multi objectives and is solved based on evolutionary procedure including crossover and mutation operation. In the fitness function, we take the length of generated regular expression, the maximum matching characters and samples for positive training samples, and the minimum matching characters and samples for negative training samples into consideration. In addition, to accelerate the training process, we do exponential decay on the population size of the genetic algorithm. Our method together with a strong baseline is tested on 13 kinds of challenging datasets. The results demonstrate the effectiveness of our method, which outperforms the baseline on 10 kinds of data and achieves nearly 50 percent improvement on average. By doing exponential decay, the training speed is approximately 100 times faster than the methods without using exponential decay. In summary, our method possesses both effectiveness and efficiency, and can be implemented for the industry application.