Zhengzhou University
Abstract:Text-to-motion generative models span a wide range of 3D human actions but struggle with nuanced stylistic attributes such as a "Chicken" style. Due to the scarcity of style-specific data, existing approaches pull the generative prior towards a reference style, which often results in out-of-distribution low quality generations. In this work, we introduce LoRA-MDM, a lightweight framework for motion stylization that generalizes to complex actions while maintaining editability. Our key insight is that adapting the generative prior to include the style, while preserving its overall distribution, is more effective than modifying each individual motion during generation. Building on this idea, LoRA-MDM learns to adapt the prior to include the reference style using only a few samples. The style can then be used in the context of different textual prompts for generation. The low-rank adaptation shifts the motion manifold in a semantically meaningful way, enabling realistic style infusion even for actions not present in the reference samples. Moreover, preserving the distribution structure enables advanced operations such as style blending and motion editing. We compare LoRA-MDM to state-of-the-art stylized motion generation methods and demonstrate a favorable balance between text fidelity and style consistency.
Abstract:Geocoding systems are widely used in both scientific research for spatial analysis and everyday life through location-based services. The quality of geocoded data significantly impacts subsequent processes and applications, underscoring the need for next-generation systems. In response to this demand, this review first examines the evolving requirements for geocoding inputs and outputs across various scenarios these systems must address. It then provides a detailed analysis of how to construct such systems by breaking them down into key functional components and reviewing a broad spectrum of existing approaches, from traditional rule-based methods to advanced techniques in information retrieval, natural language processing, and large language models. Finally, we identify opportunities to improve next-generation geocoding systems in light of recent technological advances.
Abstract:Modeling human-scene interactions (HSI) is essential for understanding and simulating everyday human behaviors. Recent approaches utilizing generative modeling have made progress in this domain; however, they are limited in controllability and flexibility for real-world applications. To address these challenges, we propose reformulating the HSI modeling problem as Scene-aware Motion In-betweening -- a more tractable and practical task. We introduce SceneMI, a framework that supports several practical applications, including keyframe-guided character animation in 3D scenes and enhancing the motion quality of imperfect HSI data. SceneMI employs dual scene descriptors to comprehensively encode global and local scene context. Furthermore, our framework leverages the inherent denoising nature of diffusion models to generalize on noisy keyframes. Experimental results demonstrate SceneMI's effectiveness in scene-aware keyframe in-betweening and generalization to the real-world GIMO dataset, where motions and scenes are acquired by noisy IMU sensors and smartphones. We further showcase SceneMI's applicability in HSI reconstruction from monocular videos.
Abstract:The increasing popularity of personalized avatar systems, such as Snapchat Bitmojis and Apple Memojis, highlights the growing demand for digital self-representation. Despite their widespread use, existing avatar platforms face significant limitations, including restricted expressivity due to predefined assets, tedious customization processes, or inefficient rendering requirements. Addressing these shortcomings, we introduce Snapmoji, an avatar generation system that instantly creates animatable, dual-stylized avatars from a selfie. We propose Gaussian Domain Adaptation (GDA), which is pre-trained on large-scale Gaussian models using 3D data from sources such as Objaverse and fine-tuned with 2D style transfer tasks, endowing it with a rich 3D prior. This enables Snapmoji to transform a selfie into a primary stylized avatar, like the Bitmoji style, and apply a secondary style, such as Plastic Toy or Alien, all while preserving the user's identity and the primary style's integrity. Our system is capable of producing 3D Gaussian avatars that support dynamic animation, including accurate facial expression transfer. Designed for efficiency, Snapmoji achieves selfie-to-avatar conversion in just 0.9 seconds and supports real-time interactions on mobile devices at 30 to 40 frames per second. Extensive testing confirms that Snapmoji outperforms existing methods in versatility and speed, making it a convenient tool for automatic avatar creation in various styles.
Abstract:Electrocardiograms (ECG), which record the electrophysiological activity of the heart, have become a crucial tool for diagnosing these diseases. In recent years, the application of deep learning techniques has significantly improved the performance of ECG signal classification. Multi-resolution feature analysis, which captures and processes information at different time scales, can extract subtle changes and overall trends in ECG signals, showing unique advantages. However, common multi-resolution analysis methods based on simple feature addition or concatenation may lead to the neglect of low-resolution features, affecting model performance. To address this issue, this paper proposes the Multi-Resolution Mutual Learning Network (MRM-Net). MRM-Net includes a dual-resolution attention architecture and a feature complementary mechanism. The dual-resolution attention architecture processes high-resolution and low-resolution features in parallel. Through the attention mechanism, the high-resolution and low-resolution branches can focus on subtle waveform changes and overall rhythm patterns, enhancing the ability to capture critical features in ECG signals. Meanwhile, the feature complementary mechanism introduces mutual feature learning after each layer of the feature extractor. This allows features at different resolutions to reinforce each other, thereby reducing information loss and improving model performance and robustness. Experiments on the PTB-XL and CPSC2018 datasets demonstrate that MRM-Net significantly outperforms existing methods in multi-label ECG classification performance. The code for our framework will be publicly available at https://github.com/wxhdf/MRM.
Abstract:In an era of increased climatic disasters, there is an urgent need to develop reliable frameworks and tools for evaluating and improving community resilience to climatic hazards at multiple geographical and temporal scales. Defining and quantifying resilience in the social domain is relatively subjective due to the intricate interplay of socioeconomic factors with disaster resilience. Meanwhile, there is a lack of computationally rigorous, user-friendly tools that can support customized resilience assessment considering local conditions. This study aims to address these gaps through the power of CyberGIS with three objectives: 1) To develop an empirically validated disaster resilience model - Customized Resilience Inference Measurement designed for multi-scale community resilience assessment and influential socioeconomic factors identification, 2) To implement a Platform for Resilience Inference Measurement and Enhancement module in the CyberGISX platform backed by high-performance computing, 3) To demonstrate the utility of PRIME through a representative study. CRIM generates vulnerability, adaptability, and overall resilience scores derived from empirical hazard parameters. Computationally intensive Machine Learning methods are employed to explain the intricate relationships between these scores and socioeconomic driving factors. PRIME provides a web-based notebook interface guiding users to select study areas, configure parameters, calculate and geo-visualize resilience scores, and interpret socioeconomic factors shaping resilience capacities. A representative study showcases the efficiency of the platform while explaining how the visual results obtained may be interpreted. The essence of this work lies in its comprehensive architecture that encapsulates the requisite data, analytical and geo-visualization functions, and ML models for resilience assessment.
Abstract:Extracting precise geographical information from textual contents is crucial in a plethora of applications. For example, during hazardous events, a robust and unbiased toponym extraction framework can provide an avenue to tie the location concerned to the topic discussed by news media posts and pinpoint humanitarian help requests or damage reports from social media. Early studies have leveraged rule-based, gazetteer-based, deep learning, and hybrid approaches to address this problem. However, the performance of existing tools is deficient in supporting operations like emergency rescue, which relies on fine-grained, accurate geographic information. The emerging pretrained language models can better capture the underlying characteristics of text information, including place names, offering a promising pathway to optimize toponym recognition to underpin practical applications. In this paper, TopoBERT, a toponym recognition module based on a one dimensional Convolutional Neural Network (CNN1D) and Bidirectional Encoder Representation from Transformers (BERT), is proposed and fine-tuned. Three datasets (CoNLL2003-Train, Wikipedia3000, WNUT2017) are leveraged to tune the hyperparameters, discover the best training strategy, and train the model. Another two datasets (CoNLL2003-Test and Harvey2017) are used to evaluate the performance. Three distinguished classifiers, linear, multi-layer perceptron, and CNN1D, are benchmarked to determine the optimal model architecture. TopoBERT achieves state-of-the-art performance (f1-score=0.865) compared to the other five baseline models and can be applied to diverse toponym recognition tasks without additional training.
Abstract:Convolutional Neural Network (CNN) based crowd counting methods have achieved promising results in the past few years. However, the scale variation problem is still a huge challenge for accurate count estimation. In this paper, we propose a multi-scale feature aggregation network (MSFANet) that can alleviate this problem to some extent. Specifically, our approach consists of two feature aggregation modules: the short aggregation (ShortAgg) and the skip aggregation (SkipAgg). The ShortAgg module aggregates the features of the adjacent convolution blocks. Its purpose is to make features with different receptive fields fused gradually from the bottom to the top of the network. The SkipAgg module directly propagates features with small receptive fields to features with much larger receptive fields. Its purpose is to promote the fusion of features with small and large receptive fields. Especially, the SkipAgg module introduces the local self-attention features from the Swin Transformer blocks to incorporate rich spatial information. Furthermore, we present a local-and-global based counting loss by considering the non-uniform crowd distribution. Extensive experiments on four challenging datasets (ShanghaiTech dataset, UCF_CC_50 dataset, UCF-QNRF Dataset, WorldExpo'10 dataset) demonstrate the proposed easy-to-implement MSFANet can achieve promising results when compared with the previous state-of-the-art approaches.
Abstract:For uncertain multiple inputs multi-outputs (MIMO) nonlinear systems, it is nontrivial to achieve asymptotic tracking, and most existing methods normally demand certain controllability conditions that are rather restrictive or even impractical if unexpected actuator faults are involved. In this note, we present a method capable of achieving zero-error steady-state tracking with less conservative (more practical) controllability condition. By incorporating a novel Nussbaum gain technique and some positive integrable function into the control design, we develop a robust adaptive asymptotic tracking control scheme for the system with time-varying control gain being unknown its magnitude and direction. By resorting to the existence of some feasible auxiliary matrix, the current state-of-art controllability condition is further relaxed, which enlarges the class of systems that can be considered in the proposed control scheme. All the closed-loop signals are ensured to be globally ultimately uniformly bounded. Moreover, such control methodology is further extended to the case involving intermittent actuator faults, with application to robotic systems. Finally, simulation studies are carried out to demonstrate the effectiveness and flexibility of this method.
Abstract:Traffic flow forecasting is essential for traffic planning, control and management. The main challenge of traffic forecasting tasks is accurately capturing traffic networks' spatial and temporal correlation. Although there are many traffic forecasting methods, most of them still have limitations in capturing spatial and temporal correlations. To improve traffic forecasting accuracy, we propose a new Spatial-temporal forecasting model, namely the Residual Graph Convolutional Recurrent Network (RGCRN). The model uses our proposed Residual Graph Convolutional Network (ResGCN) to capture the fine-grained spatial correlation of the traffic road network and then uses a Bi-directional Gated Recurrent Unit (BiGRU) to model time series with spatial information and obtains the temporal correlation by analysing the change in information transfer between the forward and reverse neurons of the time series data. Our comparative experimental results on two real datasets show that RGCRN improves on average by 20.66% compared to the best baseline model. You can get our source code and data through https://github.com/zhangshqii/RGCRN.