Abstract:Predicting human mobility across multiple cities presents significant challenges due to the complex and diverse spatial-temporal dynamics inherent in different urban environments. In this study, we propose a robust approach to predict human mobility patterns called ST-MoE-BERT. Compared to existing methods, our approach frames the prediction task as a spatial-temporal classification problem. Our methodology integrates the Mixture-of-Experts architecture with BERT model to capture complex mobility dynamics and perform the downstream human mobility prediction task. Additionally, transfer learning is integrated to solve the challenge of data scarcity in cross-city prediction. We demonstrate the effectiveness of the proposed model on GEO-BLEU and DTW, comparing it to several state-of-the-art methods. Notably, ST-MoE-BERT achieves an average improvement of 8.29%.
Abstract:We introduce a low-resource safety enhancement method for aligning large language models (LLMs) without the need for supervised fine-tuning (SFT) or reinforcement learning from human feedback (RLHF). Our main idea is to exploit knowledge distillation to extract the alignment information from existing well-aligned LLMs and integrate it into unaligned LLMs in a plug-and-play fashion. Methodology, we employ delta debugging to identify the critical components of knowledge necessary for effective distillation. On the harmful question dataset, our method significantly enhances the average defense success rate by approximately 14.41%, reaching as high as 51.39%, in 17 unaligned pre-trained LLMs, without compromising performance.
Abstract:Along with the remarkable successes of Language language models, recent research also started to explore the security threats of LLMs, including jailbreaking attacks. Attackers carefully craft jailbreaking prompts such that a target LLM will respond to the harmful question. Existing jailbreaking attacks require either human experts or leveraging complicated algorithms to craft jailbreaking prompts. In this paper, we introduce BOOST, a simple attack that leverages only the eos tokens. We demonstrate that rather than constructing complicated jailbreaking prompts, the attacker can simply append a few eos tokens to the end of a harmful question. It will bypass the safety alignment of LLMs and lead to successful jailbreaking attacks. We further apply BOOST to four representative jailbreak methods and show that the attack success rates of these methods can be significantly enhanced by simply adding eos tokens to the prompt. To understand this simple but novel phenomenon, we conduct empirical analyses. Our analysis reveals that adding eos tokens makes the target LLM believe the input is much less harmful, and eos tokens have low attention values and do not affect LLM's understanding of the harmful questions, leading the model to actually respond to the questions. Our findings uncover how fragile an LLM is against jailbreak attacks, motivating the development of strong safety alignment approaches.
Abstract:We present a Conversational Chain-of-Action (Conv-CoA) framework for Open-domain Conversational Question Answering (OCQA). Compared with literature, Conv-CoA addresses three major challenges: (i) unfaithful hallucination that is inconsistent with real-time or domain facts, (ii) weak reasoning performance in conversational scenarios, and (iii) unsatisfying performance in conversational information retrieval. Our key contribution is a dynamic reasoning-retrieval mechanism that extracts the intent of the question and decomposes it into a reasoning chain to be solved via systematic prompting, pre-designed actions, updating the Contextual Knowledge Set (CKS), and a novel Hopfield-based retriever. Methodologically, we propose a resource-efficiency Hopfield retriever to enhance the efficiency and accuracy of conversational information retrieval within our actions. Additionally, we propose a conversational-multi-reference faith score (Conv-MRFS) to verify and resolve conflicts between retrieved knowledge and answers in conversations. Empirically, we conduct comparisons between our framework and 23 state-of-the-art methods across five different research directions and two public benchmarks. These comparisons demonstrate that our Conv-CoA outperforms other methods in both the accuracy and efficiency dimensions.
Abstract:We present a Chain-of-Action (CoA) framework for multimodal and retrieval-augmented Question-Answering (QA). Compared to the literature, CoA overcomes two major challenges of current QA applications: (i) unfaithful hallucination that is inconsistent with real-time or domain facts and (ii) weak reasoning performance over compositional information. Our key contribution is a novel reasoning-retrieval mechanism that decomposes a complex question into a reasoning chain via systematic prompting and pre-designed actions. Methodologically, we propose three types of domain-adaptable `Plug-and-Play' actions for retrieving real-time information from heterogeneous sources. We also propose a multi-reference faith score (MRFS) to verify and resolve conflicts in the answers. Empirically, we exploit both public benchmarks and a Web3 case study to demonstrate the capability of CoA over other methods.
Abstract:We introduce SMUTF, a unique approach for large-scale tabular data schema matching (SM), which assumes that supervised learning does not affect performance in open-domain tasks, thereby enabling effective cross-domain matching. This system uniquely combines rule-based feature engineering, pre-trained language models, and generative large language models. In an innovative adaptation inspired by the Humanitarian Exchange Language, we deploy 'generative tags' for each data column, enhancing the effectiveness of SM. SMUTF exhibits extensive versatility, working seamlessly with any pre-existing pre-trained embeddings, classification methods, and generative models. Recognizing the lack of extensive, publicly available datasets for SM, we have created and open-sourced the HDXSM dataset from the public humanitarian data. We believe this to be the most exhaustive SM dataset currently available. In evaluations across various public datasets and the novel HDXSM dataset, SMUTF demonstrated exceptional performance, surpassing existing state-of-the-art models in terms of accuracy and efficiency, and} improving the F1 score by 11.84% and the AUC of ROC by 5.08%.
Abstract:In high dimensions, most machine learning method perform fragile even there are a little outliers. To address this, we hope to introduce a new method with the base learner, such as Bayesian regression or stochastic gradient descent to solve the problem of the vulnerability in the model. Because the mini-batch gradient descent allows for a more robust convergence than the batch gradient descent, we work a method with the mini-batch gradient descent, called Mini-Batch Gradient Descent with Trimming (MBGDT). Our method show state-of-art performance and have greater robustness than several baselines when we apply our method in designed dataset.
Abstract:In this work, we build recent advances in distributional reinforcement learning to give a state-of-art distributional variant of the model based on the IQN. We achieve this by using the GAN model's generator and discriminator function with the quantile regression to approximate the full quantile value for the state-action return distribution. We demonstrate improved performance on our baseline dataset - 57 Atari 2600 games in the ALE. Also, we use our algorithm to show the state-of-art training performance of risk-sensitive policies in Atari games with the policy optimization and evaluation.
Abstract:People with visual impairments urgently need helps, not only on the basic tasks such as guiding and retrieving objects , but on the advanced tasks like picturing the new environments. More than a guiding dog, they might want some devices which are able to provide linguistic interaction. Building on various research literature, we aim to conduct a research on the interaction between the robot agent and visual impaired people. The robot agent, applied VQA techniques, is able to analyze the environment, process and understand the pronouncing questions, and provide feedback to the human user. In this paper, we are going to discuss the related questions about this kind of interaction, the techniques we used in this work, and how we conduct our research.
Abstract:The latest work for Question and Answer problems is to use the Stanford Parse Tree. We build on prior work and develop a new method to handle the Question and Answer problem with the Deep Contextualized Transformer to manage some aberrant expressions. We also conduct extensive evaluations of the SQuAD and SwDA dataset and show significant improvement over QA problem classification of industry needs. We also investigate the impact of different models for the accuracy and efficiency of the problem answers. It shows that our new method is more effective for solving QA problems with higher accuracy