Abstract:Multi-modal large language models (MLLMs) have been given free rein to explore exciting medical applications with a primary focus on radiology report generation. Nevertheless, the preliminary success in 2D radiology captioning is incompetent to reflect the real-world diagnostic challenge in the volumetric 3D anatomy. To mitigate three crucial limitation aspects in the existing literature, including (1) data complexity, (2) model capacity, and (3) evaluation metric fidelity, we collected an 18,885 text-scan pairs 3D-BrainCT dataset and applied clinical visual instruction tuning (CVIT) to train BrainGPT models to generate radiology-adherent 3D brain CT reports. Statistically, our BrainGPT scored BLEU-1 = 44.35, BLEU-4 = 20.38, METEOR = 30.13, ROUGE-L = 47.6, and CIDEr-R = 211.77 during internal testing and demonstrated an accuracy of 0.91 in captioning midline shifts on the external validation CQ500 dataset. By further inspecting the captioned report, we reported that the traditional metrics appeared to measure only the surface text similarity and failed to gauge the information density of the diagnostic purpose. To close this gap, we proposed a novel Feature-Oriented Radiology Task Evaluation (FORTE) to estimate the report's clinical relevance (lesion feature and landmarks). Notably, the BrainGPT model scored an average FORTE F1-score of 0.71 (degree=0.661; landmark=0.706; feature=0.693; impression=0.779). To demonstrate that BrainGPT models possess objective readiness to generate human-like radiology reports, we conducted a Turing test that enrolled 11 physician evaluators, and around 74% of the BrainGPT-generated captions were indistinguishable from those written by humans. Our work embodies a holistic framework that showcased the first-hand experience of curating a 3D brain CT dataset, fine-tuning anatomy-sensible language models, and proposing robust radiology evaluation metrics.
Abstract:Path planning is a fundamental scientific problem in robotics and autonomous navigation, requiring the derivation of efficient routes from starting to destination points while avoiding obstacles. Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows. Conversely, large language models (LLMs) excel in broader environmental analysis through contextual understanding, providing global insights into environments. However, they fall short in detailed spatial and temporal reasoning, often leading to invalid or inefficient routes. In this work, we propose LLM-A*, an new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs. This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios. By integrating the strengths of both methodologies, LLM-A* addresses the computational and memory limitations of conventional algorithms without compromising on the validity required for effective pathfinding.
Abstract:Self-training can potentially improve the performance of language agents without relying on demonstrations from humans or stronger models. The general process involves generating samples from a model, evaluating their quality, and updating the model by training on high-quality samples. However, self-training can face limitations because achieving good performance requires a good amount of high-quality samples, yet relying solely on model sampling for obtaining such samples can be inefficient. In addition, these methods often disregard low-quality samples, failing to leverage them effectively. To address these limitations, we present Reflection-Reinforced Self-Training (Re-ReST), which leverages a reflection model to refine low-quality samples and subsequently uses these improved samples to augment self-training. The reflection model takes both the model output and feedback from an external environment (e.g., unit test results in code generation) as inputs and produces improved samples as outputs. By employing this technique, we effectively enhance the quality of inferior samples, and enrich the self-training dataset with higher-quality samples efficiently. We perform extensive experiments on open-source language agents across tasks, including multi-hop question answering, sequential decision-making, code generation, visual question answering, and text-to-image generation. Results demonstrate improvements over self-training baselines across settings. Moreover, ablation studies confirm the reflection model's efficiency in generating quality self-training samples and its compatibility with self-consistency decoding.
Abstract:Task planning for embodied AI has been one of the most challenging problems where the community does not meet a consensus in terms of formulation. In this paper, we aim to tackle this problem with a unified framework consisting of an end-to-end trainable method and a planning algorithm. Particularly, we propose a task-agnostic method named 'planning as in-painting'. In this method, we use a Denoising Diffusion Model (DDM) for plan generation, conditioned on both language instructions and perceptual inputs under partially observable environments. Partial observation often leads to the model hallucinating the planning. Therefore, our diffusion-based method jointly models both state trajectory and goal estimation to improve the reliability of the generated plan, given the limited available information at each step. To better leverage newly discovered information along the plan execution for a higher success rate, we propose an on-the-fly planning algorithm to collaborate with the diffusion-based planner. The proposed framework achieves promising performances in various embodied AI tasks, including vision-language navigation, object manipulation, and task planning in a photorealistic virtual environment. The code is available at: https://github.com/joeyy5588/planning-as-inpainting.
Abstract:End-to-end Transformers have demonstrated an impressive success rate for Embodied Instruction Following when the environment has been seen in training. However, they tend to struggle when deployed in an unseen environment. This lack of generalizability is due to the agent's insensitivity to subtle changes in natural language instructions. To mitigate this issue, we propose explicitly aligning the agent's hidden states with the instructions via contrastive learning. Nevertheless, the semantic gap between high-level language instructions and the agent's low-level action space remains an obstacle. Therefore, we further introduce a novel concept of meta-actions to bridge the gap. Meta-actions are ubiquitous action patterns that can be parsed from the original action sequence. These patterns represent higher-level semantics that are intuitively aligned closer to the instructions. When meta-actions are applied as additional training signals, the agent generalizes better to unseen environments. Compared to a strong multi-modal Transformer baseline, we achieve a significant 4.5% absolute gain in success rate in unseen environments of ALFRED Embodied Instruction Following. Additional analysis shows that the contrastive objective and meta-actions are complementary in achieving the best results, and the resulting agent better aligns its states with corresponding instructions, making it more suitable for real-world embodied agents. The code is available at: https://github.com/joeyy5588/LACMA.
Abstract:We tackle the problem of target-free text-guided image manipulation, which requires one to modify the input reference image based on the given text instruction, while no ground truth target image is observed during training. To address this challenging task, we propose a Cyclic-Manipulation GAN (cManiGAN) in this paper, which is able to realize where and how to edit the image regions of interest. Specifically, the image editor in cManiGAN learns to identify and complete the input image, while cross-modal interpreter and reasoner are deployed to verify the semantic correctness of the output image based on the input instruction. While the former utilizes factual/counterfactual description learning for authenticating the image semantics, the latter predicts the "undo" instruction and provides pixel-level supervision for the training of cManiGAN. With such operational cycle-consistency, our cManiGAN can be trained in the above weakly supervised setting. We conduct extensive experiments on the datasets of CLEVR and COCO, and the effectiveness and generalizability of our proposed method can be successfully verified. Project page: https://sites.google.com/view/wancyuanfan/projects/cmanigan.
Abstract:Novel object captioning (NOC) aims to describe images containing objects without observing their ground truth captions during training. Due to the absence of caption annotation, captioning models cannot be directly optimized via sequence-to-sequence training or CIDEr optimization. As a result, we present Paraphrasing-to-Captioning (P2C), a two-stage learning framework for NOC, which would heuristically optimize the output captions via paraphrasing. With P2C, the captioning model first learns paraphrasing from a language model pre-trained on text-only corpus, allowing expansion of the word bank for improving linguistic fluency. To further enforce the output caption sufficiently describing the visual content of the input image, we perform self-paraphrasing for the captioning model with fidelity and adequacy objectives introduced. Since no ground truth captions are available for novel object images during training, our P2C leverages cross-modality (image-text) association modules to ensure the above caption characteristics can be properly preserved. In the experiments, we not only show that our P2C achieves state-of-the-art performances on nocaps and COCO Caption datasets, we also verify the effectiveness and flexibility of our learning framework by replacing language and cross-modality association models for NOC. Implementation details and code are available in the supplementary materials.
Abstract:In this paper, we address the task of semantics-guided image outpainting, which is to complete an image by generating semantically practical content. Different from most existing image outpainting works, we approach the above task by understanding and completing image semantics at the scene graph level. In particular, we propose a novel network of Scene Graph Transformer (SGT), which is designed to take node and edge features as inputs for modeling the associated structural information. To better understand and process graph-based inputs, our SGT uniquely performs feature attention at both node and edge levels. While the former views edges as relationship regularization, the latter observes the co-occurrence of nodes for guiding the attention process. We demonstrate that, given a partial input image with its layout and scene graph, our SGT can be applied for scene graph expansion and its conversion to a complete layout. Following state-of-the-art layout-to-image conversions works, the task of image outpainting can be completed with sufficient and practical semantics introduced. Extensive experiments are conducted on the datasets of MS-COCO and Visual Genome, which quantitatively and qualitatively confirm the effectiveness of our proposed SGT and outpainting frameworks.