Abstract:Diffusion models have found great success in generating high quality, natural samples of speech, but their potential for density estimation for speech has so far remained largely unexplored. In this work, we leverage an unconditional diffusion model trained only on clean speech for the assessment of speech quality. We show that the quality of a speech utterance can be assessed by estimating the likelihood of a corresponding sample in the terminating Gaussian distribution, obtained via a deterministic noising process. The resulting method is purely unsupervised, trained only on clean speech, and therefore does not rely on annotations. Our diffusion-based approach leverages clean speech priors to assess quality based on how the input relates to the learned distribution of clean data. Our proposed log-likelihoods show promising results, correlating well with intrusive speech quality metrics such as POLQA and SI-SDR.
Abstract:Generative speech enhancement has recently shown promising advancements in improving speech quality in noisy environments. Multiple diffusion-based frameworks exist, each employing distinct training objectives and learning techniques. This paper aims at explaining the differences between these frameworks by focusing our investigation on score-based generative models and Schr\"odinger bridge. We conduct a series of comprehensive experiments to compare their performance and highlight differing training behaviors. Furthermore, we propose a novel perceptual loss function tailored for the Schr\"odinger bridge framework, demonstrating enhanced performance and improved perceptual quality of the enhanced speech signals. All experimental code and pre-trained models are publicly available to facilitate further research and development in this.
Abstract:We release the EARS (Expressive Anechoic Recordings of Speech) dataset, a high-quality speech dataset comprising 107 speakers from diverse backgrounds, totaling in 100 hours of clean, anechoic speech data. The dataset covers a large range of different speaking styles, including emotional speech, different reading styles, non-verbal sounds, and conversational freeform speech. We benchmark various methods for speech enhancement and dereverberation on the dataset and evaluate their performance through a set of instrumental metrics. In addition, we conduct a listening test with 20 participants for the speech enhancement task, where a generative method is preferred. We introduce a blind test set that allows for automatic online evaluation of uploaded data. Dataset download links and automatic evaluation server can be found online.
Abstract:To obtain improved speech enhancement models, researchers often focus on increasing performance according to specific instrumental metrics. However, when the same metric is used in a loss function to optimize models, it may be detrimental to aspects that the given metric does not see. The goal of this paper is to illustrate the risk of overfitting a speech enhancement model to the metric used for evaluation. For this, we introduce enhancement models that exploit the widely used PESQ measure. Our "PESQetarian" model achieves 3.82 PESQ on VB-DMD while scoring very poorly in a listening experiment. While the obtained PESQ value of 3.82 would imply "state-of-the-art" PESQ-performance on the VB-DMD benchmark, our examples show that when optimizing w.r.t. a metric, an isolated evaluation on the same metric may be misleading. Instead, other metrics should be included in the evaluation and the resulting performance predictions should be confirmed by listening.
Abstract:With the development of audio playback devices and fast data transmission, the demand for high sound quality is rising, for both entertainment and communications. In this quest for better sound quality, challenges emerge from distortions and interferences originating at the recording side or caused by an imperfect transmission pipeline. To address this problem, audio restoration methods aim to recover clean sound signals from the corrupted input data. We present here audio restoration algorithms based on diffusion models, with a focus on speech enhancement and music restoration tasks. Traditional approaches, often grounded in handcrafted rules and statistical heuristics, have shaped our understanding of audio signals. In the past decades, there has been a notable shift towards data-driven methods that exploit the modeling capabilities of deep neural networks (DNNs). Deep generative models, and among them diffusion models, have emerged as powerful techniques for learning complex data distributions. However, relying solely on DNN-based learning approaches carries the risk of reducing interpretability, particularly when employing end-to-end models. Nonetheless, data-driven approaches allow more flexibility in comparison to statistical model-based frameworks whose performance depends on distributional and statistical assumptions that can be difficult to guarantee. Here, we aim to show that diffusion models can combine the best of both worlds and offer the opportunity to design audio restoration algorithms with a good degree of interpretability and a remarkable performance in terms of sound quality.
Abstract:Diffusion models have shown promising results in speech enhancement, using a task-adapted diffusion process for the conditional generation of clean speech given a noisy mixture. However, at test time, the neural network used for score estimation is called multiple times to solve the iterative reverse process. This results in a slow inference process and causes discretization errors that accumulate over the sampling trajectory. In this paper, we address these limitations through a two-stage training approach. In the first stage, we train the diffusion model the usual way using the generative denoising score matching loss. In the second stage, we compute the enhanced signal by solving the reverse process and compare the resulting estimate to the clean speech target using a predictive loss. We show that using this second training stage enables achieving the same performance as the baseline model using only 5 function evaluations instead of 60 function evaluations. While the performance of usual generative diffusion algorithms drops dramatically when lowering the number of function evaluations (NFEs) to obtain single-step diffusion, we show that our proposed method keeps a steady performance and therefore largely outperforms the diffusion baseline in this setting and also generalizes better than its predictive counterpart.
Abstract:Since its inception, the field of deep speech enhancement has been dominated by predictive (discriminative) approaches, such as spectral mapping or masking. Recently, however, novel generative approaches have been applied to speech enhancement, attaining good denoising performance with high subjective quality scores. At the same time, advances in deep learning also allowed for the creation of neural network-based metrics, which have desirable traits such as being able to work without a reference (non-intrusively). Since generatively enhanced speech tends to exhibit radically different residual distortions, its evaluation using instrumental speech metrics may behave differently compared to predictively enhanced speech. In this paper, we evaluate the performance of the same speech enhancement backbone trained under predictive and generative paradigms on a variety of metrics and show that intrusive and non-intrusive measures correlate differently for each paradigm. This analysis motivates the search for metrics that can together paint a complete and unbiased picture of speech enhancement performance, irrespective of the model's training process.
Abstract:This paper introduces an audio-visual speech enhancement system that leverages score-based generative models, also known as diffusion models, conditioned on visual information. In particular, we exploit audio-visual embeddings obtained from a self-super\-vised learning model that has been fine-tuned on lipreading. The layer-wise features of its transformer-based encoder are aggregated, time-aligned, and incorporated into the noise conditional score network. Experimental evaluations show that the proposed audio-visual speech enhancement system yields improved speech quality and reduces generative artifacts such as phonetic confusions with respect to the audio-only equivalent. The latter is supported by the word error rate of a downstream automatic speech recognition model, which decreases noticeably, especially at low input signal-to-noise ratios.
Abstract:We propose Audio-Visual Lightweight ITerative model (AVLIT), an effective and lightweight neural network that uses Progressive Learning (PL) to perform audio-visual speech separation in noisy environments. To this end, we adopt the Asynchronous Fully Recurrent Convolutional Neural Network (A-FRCNN), which has shown successful results in audio-only speech separation. Our architecture consists of an audio branch and a video branch, with iterative A-FRCNN blocks sharing weights for each modality. We evaluated our model in a controlled environment using the NTCD-TIMIT dataset and in-the-wild using a synthetic dataset that combines LRS3 and WHAM!. The experiments demonstrate the superiority of our model in both settings with respect to various audio-only and audio-visual baselines. Furthermore, the reduced footprint of our model makes it suitable for low resource applications.
Abstract:In this paper, we present a causal speech signal improvement system that is designed to handle different types of distortions. The method is based on a generative diffusion model which has been shown to work well in scenarios with missing data and non-linear corruptions. To guarantee causal processing, we modify the network architecture of our previous work and replace global normalization with causal adaptive gain control. We generate diverse training data containing a broad range of distortions. This work was performed in the context of an "ICASSP Signal Processing Grand Challenge" and submitted to the non-real-time track of the "Speech Signal Improvement Challenge 2023", where it was ranked fifth.