Abstract:Analyzing operating room (OR) workflows to derive quantitative insights into OR efficiency is important for hospitals to maximize patient care and financial sustainability. Prior work on OR-level workflow analysis has relied on end-to-end deep neural networks. While these approaches work well in constrained settings, they are limited to the conditions specified at development time and do not offer the flexibility necessary to accommodate the OR workflow analysis needs of various OR scenarios (e.g., large academic center vs. rural provider) without data collection, annotation, and retraining. Reasoning segmentation (RS) based on foundation models offers this flexibility by enabling automated analysis of OR workflows from OR video feeds given only an implicit text query related to the objects of interest. Due to the reliance on large language model (LLM) fine-tuning, current RS approaches struggle with reasoning about semantic/spatial relationships and show limited generalization to OR video due to variations in visual characteristics and domain-specific terminology. To address these limitations, we first propose a novel digital twin (DT) representation that preserves both semantic and spatial relationships between the various OR components. Then, building on this foundation, we propose ORDiRS (Operating Room Digital twin representation for Reasoning Segmentation), an LLM-tuning-free RS framework that reformulates RS into a "reason-retrieval-synthesize" paradigm. Finally, we present ORDiRS-Agent, an LLM-based agent that decomposes OR workflow analysis queries into manageable RS sub-queries and generates responses by combining detailed textual explanations with supporting visual evidence from RS. Experimental results on both an in-house and a public OR dataset demonstrate that our ORDiRS achieves a cIoU improvement of 6.12%-9.74% compared to the existing state-of-the-arts.
Abstract:Multi-modal large language models (MLLMs) have been given free rein to explore exciting medical applications with a primary focus on radiology report generation. Nevertheless, the preliminary success in 2D radiology captioning is incompetent to reflect the real-world diagnostic challenge in the volumetric 3D anatomy. To mitigate three crucial limitation aspects in the existing literature, including (1) data complexity, (2) model capacity, and (3) evaluation metric fidelity, we collected an 18,885 text-scan pairs 3D-BrainCT dataset and applied clinical visual instruction tuning (CVIT) to train BrainGPT models to generate radiology-adherent 3D brain CT reports. Statistically, our BrainGPT scored BLEU-1 = 44.35, BLEU-4 = 20.38, METEOR = 30.13, ROUGE-L = 47.6, and CIDEr-R = 211.77 during internal testing and demonstrated an accuracy of 0.91 in captioning midline shifts on the external validation CQ500 dataset. By further inspecting the captioned report, we reported that the traditional metrics appeared to measure only the surface text similarity and failed to gauge the information density of the diagnostic purpose. To close this gap, we proposed a novel Feature-Oriented Radiology Task Evaluation (FORTE) to estimate the report's clinical relevance (lesion feature and landmarks). Notably, the BrainGPT model scored an average FORTE F1-score of 0.71 (degree=0.661; landmark=0.706; feature=0.693; impression=0.779). To demonstrate that BrainGPT models possess objective readiness to generate human-like radiology reports, we conducted a Turing test that enrolled 11 physician evaluators, and around 74% of the BrainGPT-generated captions were indistinguishable from those written by humans. Our work embodies a holistic framework that showcased the first-hand experience of curating a 3D brain CT dataset, fine-tuning anatomy-sensible language models, and proposing robust radiology evaluation metrics.
Abstract:The significant breakthroughs of Medical Multi-Modal Large Language Models (Med-MLLMs) renovate modern healthcare with robust information synthesis and medical decision support. However, these models are often evaluated on benchmarks that are unsuitable for the Med-MLLMs due to the intricate nature of the real-world diagnostic frameworks, which encompass diverse medical specialties and involve complex clinical decisions. Moreover, these benchmarks are susceptible to data leakage, since Med-MLLMs are trained on large assemblies of publicly available data. Thus, an isolated and clinically representative benchmark is highly desirable for credible Med-MLLMs evaluation. To this end, we introduce Asclepius, a novel Med-MLLM benchmark that rigorously and comprehensively assesses model capability in terms of: distinct medical specialties (cardiovascular, gastroenterology, etc.) and different diagnostic capacities (perception, disease analysis, etc.). Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties, stratifying into 3 main categories and 8 sub-categories of clinical tasks, and exempting from train-validate contamination. We further provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists, providing insights into their competencies and limitations in various medical contexts. Our work not only advances the understanding of Med-MLLMs' capabilities but also sets a precedent for future evaluations and the safe deployment of these models in clinical environments. We launch and maintain a leaderboard for community assessment of Med-MLLM capabilities (https://asclepius-med.github.io/).