Abstract:Reasoning segmentation (RS) aims to identify and segment objects of interest based on implicit text queries. As such, RS is a catalyst for embodied AI agents, enabling them to interpret high-level commands without requiring explicit step-by-step guidance. However, current RS approaches rely heavily on the visual perception capabilities of multimodal large language models (LLMs), leading to several major limitations. First, they struggle with queries that require multiple steps of reasoning or those that involve complex spatial/temporal relationships. Second, they necessitate LLM fine-tuning, which may require frequent updates to maintain compatibility with contemporary LLMs and may increase risks of catastrophic forgetting during fine-tuning. Finally, being primarily designed for static images or offline video processing, they scale poorly to online video data. To address these limitations, we propose an agent framework that disentangles perception and reasoning for online video RS without LLM fine-tuning. Our innovation is the introduction of a just-in-time digital twin concept, where -- given an implicit query -- a LLM plans the construction of a low-level scene representation from high-level video using specialist vision models. We refer to this approach to creating a digital twin as "just-in-time" because the LLM planner will anticipate the need for specific information and only request this limited subset instead of always evaluating every specialist model. The LLM then performs reasoning on this digital twin representation to identify target objects. To evaluate our approach, we introduce a new comprehensive video reasoning segmentation benchmark comprising 200 videos with 895 implicit text queries. The benchmark spans three reasoning categories (semantic, spatial, and temporal) with three different reasoning chain complexity.
Abstract:Analyzing operating room (OR) workflows to derive quantitative insights into OR efficiency is important for hospitals to maximize patient care and financial sustainability. Prior work on OR-level workflow analysis has relied on end-to-end deep neural networks. While these approaches work well in constrained settings, they are limited to the conditions specified at development time and do not offer the flexibility necessary to accommodate the OR workflow analysis needs of various OR scenarios (e.g., large academic center vs. rural provider) without data collection, annotation, and retraining. Reasoning segmentation (RS) based on foundation models offers this flexibility by enabling automated analysis of OR workflows from OR video feeds given only an implicit text query related to the objects of interest. Due to the reliance on large language model (LLM) fine-tuning, current RS approaches struggle with reasoning about semantic/spatial relationships and show limited generalization to OR video due to variations in visual characteristics and domain-specific terminology. To address these limitations, we first propose a novel digital twin (DT) representation that preserves both semantic and spatial relationships between the various OR components. Then, building on this foundation, we propose ORDiRS (Operating Room Digital twin representation for Reasoning Segmentation), an LLM-tuning-free RS framework that reformulates RS into a "reason-retrieval-synthesize" paradigm. Finally, we present ORDiRS-Agent, an LLM-based agent that decomposes OR workflow analysis queries into manageable RS sub-queries and generates responses by combining detailed textual explanations with supporting visual evidence from RS. Experimental results on both an in-house and a public OR dataset demonstrate that our ORDiRS achieves a cIoU improvement of 6.12%-9.74% compared to the existing state-of-the-arts.
Abstract:Fiber Kerr nonlinearity is a fundamental limitation to the achievable capacity of long-distance optical fiber communication. Digital back-propagation (DBP) is a primary methodology to mitigate both linear and nonlinear impairments by solving the inverse-propagating nonlinear Schr\"odinger equation (NLSE), which requires detailed link information. Recently, the paradigms based on neural network (NN) were proposed to mitigate nonlinear transmission impairments in optical communication systems. However, almost all neural network-based equalization schemes yield high computation complexity, which prevents the practical implementation in commercial transmission systems. In this paper, we propose a center-oriented long short-term memory network (Co-LSTM) incorporating a simplified mode with a recycling mechanism in the equalization operation, which can mitigate fiber nonlinearity in coherent optical communication systems with ultralow complexity. To validate the proposed methodology, we carry out an experiment of ten-channel wavelength division multiplexing (WDM) transmission with 64 Gbaud polarization-division-multiplexed 16-ary quadrature amplitude modulation (16-QAM) signals. Co-LSTM and DBP achieve a comparable performance of nonlinear mitigation. However, the complexity of Co-LSTM with a simplified mode is almost independent of the transmission distance, which is much lower than that of the DBP. The proposed Co-LSTM methodology presents an attractive approach for low complexity nonlinearity mitigation with neural networks.