Abstract:Large language models have manifested remarkable capabilities by leveraging chain-of-thought (CoT) reasoning techniques to solve intricate questions through step-by-step reasoning chains. Despite its success, the efficacy of such reasoning is inherently contingent upon the quality of CoT. However, flawless CoT reasoning cannot be guaranteed due to the presence of indecomposable questions and the potential for erroneous reasoning chains, particularly in the case of small-scale language models. To tackle this challenge, we propose a novel approach called the selective filtering reasoner (SelF-Reasoner) that assesses the entailment relationship between the question and the candidate reasoning chain. Then, we proceed with CoT reasoning when the reasoning chain demonstrates confidence; otherwise, we opt to predict the answer directly. SelF-Reasoner improves the fine-tuned T5 baseline consistently over the ScienceQA, ECQA, and LastLetter tasks. Code is available at \texttt{https://github.com/LibroWu/SelF-Reasoner}.
Abstract:Neuronal morphology is essential for studying brain functioning and understanding neurodegenerative disorders. As the acquiring of real-world morphology data is expensive, computational approaches especially learning-based ones e.g. MorphVAE for morphology generation were recently studied, which are often conducted in a way of randomly augmenting a given authentic morphology to achieve plausibility. Under such a setting, this paper proposes \textbf{MorphGrower} which aims to generate more plausible morphology samples by mimicking the natural growth mechanism instead of a one-shot treatment as done in MorphVAE. Specifically, MorphGrower generates morphologies layer by layer synchronously and chooses a pair of sibling branches as the basic generation block, and the generation of each layer is conditioned on the morphological structure of previous layers and then generate morphologies via a conditional variational autoencoder with spherical latent space. Extensive experimental results on four real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a notable margin. Our code will be publicly available to facilitate future research.