Abstract:Ensuring adherence to traffic sign regulations is essential for both human and autonomous vehicle navigation. While current benchmark datasets concentrate on lane perception or basic traffic sign recognition, they often overlook the intricate task of integrating these regulations into lane operations. Addressing this gap, we introduce MapDR, a novel dataset designed for the extraction of Driving Rules from traffic signs and their association with vectorized, locally perceived HD Maps. MapDR features over 10,000 annotated video clips that capture the intricate correlation between traffic sign regulations and lanes. We define two pivotal sub-tasks: 1) Rule Extraction from Traffic Sign, which accurately deciphers regulatory instructions, and 2) Rule-Lane Correspondence Reasoning, which aligns these rules with their respective lanes. Built upon this benchmark, we provide a multimodal solution that offers a strong baseline for advancing autonomous driving technologies. It fills a critical gap in the integration of traffic sign rules, contributing to the development of reliable autonomous navigation systems.
Abstract:High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles, yet their creation and upkeep present significant cost and timeliness challenges. The online construction of HD maps using on-board sensors has emerged as a promising solution; however, these methods can be impeded by incomplete data due to occlusions and inclement weather. This paper proposes the PriorDrive framework to addresses these limitations by harnessing the power of prior maps, significantly enhancing the robustness and accuracy of online HD map construction. Our approach integrates a variety of prior maps, such as OpenStreetMap's Standard Definition Maps (SD maps), outdated HD maps from vendors, and locally constructed maps from historical vehicle data. To effectively encode this prior information into online mapping models, we introduce a Hybrid Prior Representation (HPQuery) that standardizes the representation of diverse map elements. At the core of PriorDrive is the Unified Vector Encoder (UVE), which employs a dual encoding mechanism to process vector data. The intra-vector encoder captures fine-grained local features, while the inter-vector encoder integrates global context. Furthermore, we propose a segment-level and point-level pre-training strategy that enables the UVE to learn the prior distribution of vector data, thereby improving the encoder's generalizability and performance. Through extensive testing on the nuScenes dataset, we demonstrate that PriorDrive is highly compatible with various online mapping models and substantially improves map prediction capabilities. The integration of prior maps through the PriorDrive framework offers a robust solution to the challenges of single-perception data, paving the way for more reliable autonomous vehicle navigation.
Abstract:The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NG's topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.