Abstract:The latest research on Large Language Models (LLMs) has demonstrated significant advancement in the field of Natural Language Processing (NLP). However, despite this progress, there is still a lack of reliability in these models. This is due to the stochastic architecture of LLMs, which presents a challenge for users attempting to ascertain the reliability of a model's response. These responses may cause serious harm in high-risk environments or expensive failures in industrial contexts. Therefore, we introduce the framework REpeated Clustering of Scores Improving the Precision (RECSIP) which focuses on improving the precision of LLMs by asking multiple models in parallel, scoring and clustering their responses to ensure a higher reliability on the response. The evaluation of our reference implementation recsip on the benchmark MMLU-Pro using the models GPT-4o, Claude and Gemini shows an overall increase of 5.8 per cent points compared to the best used model.
Abstract:Recently, deep reinforcement learning (RL) has shown some impressive successes in robotic manipulation applications. However, training robots in the real world is nontrivial owing to sample efficiency and safety concerns. Sim-to-real transfer is proposed to address the aforementioned concerns but introduces a new issue called the reality gap. In this work, we introduce a sim-to-real learning framework for vision-based assembly tasks and perform training in a simulated environment by employing inputs from a single camera to address the aforementioned issues. We present a domain adaptation method based on cycle-consistent generative adversarial networks (CycleGAN) and a force control transfer approach to bridge the reality gap. We demonstrate that the proposed framework trained in a simulated environment can be successfully transferred to a real peg-in-hole setup.