Abstract:In this paper, we review the NTIRE 2024 challenge on Restore Any Image Model (RAIM) in the Wild. The RAIM challenge constructed a benchmark for image restoration in the wild, including real-world images with/without reference ground truth in various scenarios from real applications. The participants were required to restore the real-captured images from complex and unknown degradation, where generative perceptual quality and fidelity are desired in the restoration result. The challenge consisted of two tasks. Task one employed real referenced data pairs, where quantitative evaluation is available. Task two used unpaired images, and a comprehensive user study was conducted. The challenge attracted more than 200 registrations, where 39 of them submitted results with more than 400 submissions. Top-ranked methods improved the state-of-the-art restoration performance and obtained unanimous recognition from all 18 judges. The proposed datasets are available at https://drive.google.com/file/d/1DqbxUoiUqkAIkExu3jZAqoElr_nu1IXb/view?usp=sharing and the homepage of this challenge is at https://codalab.lisn.upsaclay.fr/competitions/17632.
Abstract:High perceptual quality and low distortion degree are two important goals in image restoration tasks such as super-resolution (SR). Most of the existing SR methods aim to achieve these goals by minimizing the corresponding yet conflicting losses, such as the $\ell_1$ loss and the adversarial loss. Unfortunately, the commonly used gradient-based optimizers, such as Adam, are hard to balance these objectives due to the opposite gradient decent directions of the contradictory losses. In this paper, we formulate the perception-distortion trade-off in SR as a multi-objective optimization problem and develop a new optimizer by integrating the gradient-free evolutionary algorithm (EA) with gradient-based Adam, where EA and Adam focus on the divergence and convergence of the optimization directions respectively. As a result, a population of optimal models with different perception-distortion preferences is obtained. We then design a fusion network to merge these models into a single stronger one for an effective perception-distortion trade-off. Experiments demonstrate that with the same backbone network, the perception-distortion balanced SR model trained by our method can achieve better perceptual quality than its competitors while attaining better reconstruction fidelity. Codes and models can be found at https://github.com/csslc/EA-Adam.