Abstract:Transformer has achieved satisfactory results in the field of hyperspectral image (HSI) classification. However, existing Transformer models face two key challenges when dealing with HSI scenes characterized by diverse land cover types and rich spectral information: (1) fixed receptive field representation overlooks effective contextual information; (2) redundant self-attention feature representation. To address these limitations, we propose a novel Selective Transformer (SFormer) for HSI classification. The SFormer is designed to dynamically select receptive fields for capturing both spatial and spectral contextual information, while mitigating the impact of redundant data by prioritizing the most relevant features. This enables a highly accurate classification of the land covers of the HSI. Specifically, a Kernel Selective Transformer Block (KSTB) is first utilized to dynamically select an appropriate receptive field range to effectively extract spatial-spectral features. Furthermore, to capture the most crucial tokens, a Token Selective Transformer Block (TSTB) is introduced, which selects the most relevant tokens based on the ranking of attention scores for each query. Extensive experiments on four benchmark HSI datasets demonstrate that the proposed SFormer outperforms the state-of-the-art HSI classification models. The codes will be released.
Abstract:Merging models becomes a fundamental procedure in some applications that consider model efficiency and robustness. The training randomness or Non-I.I.D. data poses a huge challenge for averaging-based model fusion. Previous research efforts focus on element-wise regularization or neural permutations to enhance model averaging while overlooking weight scope variations among models, which can significantly affect merging effectiveness. In this paper, we reveal variations in weight scope under different training conditions, shedding light on its influence on model merging. Fortunately, the parameters in each layer basically follow the Gaussian distribution, which inspires a novel and simple regularization approach named Weight Scope Alignment (WSA). It contains two key components: 1) leveraging a target weight scope to guide the model training process for ensuring weight scope matching in the subsequent model merging. 2) fusing the weight scope of two or more models into a unified one for multi-stage model fusion. We extend the WSA regularization to two different scenarios, including Mode Connectivity and Federated Learning. Abundant experimental studies validate the effectiveness of our approach.
Abstract:Foundation models (FMs) are revolutionizing the analysis and understanding of remote sensing (RS) scenes, including aerial RGB, multispectral, and SAR images. However, hyperspectral images (HSIs), which are rich in spectral information, have not seen much application of FMs, with existing methods often restricted to specific tasks and lacking generality. To fill this gap, we introduce HyperSIGMA, a vision transformer-based foundation model for HSI interpretation, scalable to over a billion parameters. To tackle the spectral and spatial redundancy challenges in HSIs, we introduce a novel sparse sampling attention (SSA) mechanism, which effectively promotes the learning of diverse contextual features and serves as the basic block of HyperSIGMA. HyperSIGMA integrates spatial and spectral features using a specially designed spectral enhancement module. In addition, we construct a large-scale hyperspectral dataset, HyperGlobal-450K, for pre-training, which contains about 450K hyperspectral images, significantly surpassing existing datasets in scale. Extensive experiments on various high-level and low-level HSI tasks demonstrate HyperSIGMA's versatility and superior representational capability compared to current state-of-the-art methods. Moreover, HyperSIGMA shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.