Abstract:Soft manipulators are known for their superiority in coping with high-safety-demanding interaction tasks, e.g., robot-assisted surgeries, elderly caring, etc. Yet the challenges residing in real-time contact feedback have hindered further applications in precise manipulation. This paper proposes an end-to-end network to estimate the 3D contact force of the soft robot, with the aim of enhancing its capabilities in interactive tasks. The presented method features directly utilizing monocular images fused with multidimensional actuation information as the network inputs. This approach simplifies the preprocessing of raw data compared to related studies that utilize 3D shape information for network inputs, consequently reducing configuration reconstruction errors. The unified feature representation module is devised to elevate low-dimensional features from the system's actuation signals to the same level as image features, facilitating smoother integration of multimodal information. The proposed method has been experimentally validated in the soft robot testbed, achieving satisfying accuracy in 3D force estimation (with a mean relative error of 0.84% compared to the best-reported result of 2.2% in the related works).
Abstract:Recent advancements have witnessed the ascension of Large Language Models (LLMs), endowed with prodigious linguistic capabilities, albeit marred by shortcomings including factual inconsistencies and opacity. Conversely, Knowledge Graphs (KGs) harbor verifiable knowledge and symbolic reasoning prowess, thereby complementing LLMs' deficiencies. Against this backdrop, the synergy between KGs and LLMs emerges as a pivotal research direction. Our contribution in this paper is a comprehensive dissection of the latest developments in integrating KGs with LLMs. Through meticulous analysis of their confluence points and methodologies, we introduce a unifying framework designed to elucidate and stimulate further exploration among scholars engaged in cognate disciplines. This framework serves a dual purpose: it consolidates extant knowledge while simultaneously delineating novel avenues for real-world deployment, thereby amplifying the translational impact of academic research.
Abstract:Conventional policy for configuring an intelligent reflecting surface (IRS) typically requires channel state information (CSI), thus incurring substantial overhead costs and facing incompatibility with the current network protocols. This paper proposes a blind beamforming strategy in the absence of CSI, aiming to boost the minimum signal-to-noise ratio (SNR) among all the receiver positions, namely the coverage enhancement. Although some existing works already consider the IRS-assisted coverage enhancement without CSI, they assume certain position-channel models through which the channels can be recovered from the geographic locations. In contrast, our approach solely relies on the received signal power data, not assuming any position-channel model. We examine the achievability and converse of the proposed blind beamforming method. If the IRS has $N$ reflective elements and there are $U$ receiver positions, then our method guarantees the minimum SNR of $\Omega(N^2/U)$ -- which is fairly close to the upper bound $O(N+N^2\sqrt{\ln (NU)}/\sqrt[4]{U})$. Aside from the simulation results, we justify the practical use of blind beamforming in a field test at 2.6 GHz. According to the real-world experiment, the proposed blind beamforming method boosts the minimum SNR across seven random positions in a conference room by 18.22 dB, while the position-based method yields a boost of 12.08 dB.
Abstract:Graph-Level Anomaly Detection (GLAD) aims to distinguish anomalous graphs within a graph dataset. However, current methods are constrained by their receptive fields, struggling to learn global features within the graphs. Moreover, most contemporary methods are based on spatial domain and lack exploration of spectral characteristics. In this paper, we propose a multi-perspective hybrid graph-level anomaly detector namely GLADformer, consisting of two key modules. Specifically, we first design a Graph Transformer module with global spectrum enhancement, which ensures balanced and resilient parameter distributions by fusing global features and spectral distribution characteristics. Furthermore, to uncover local anomalous attributes, we customize a band-pass spectral GNN message passing module that further enhances the model's generalization capability. Through comprehensive experiments on ten real-world datasets from multiple domains, we validate the effectiveness and robustness of GLADformer. This demonstrates that GLADformer outperforms current state-of-the-art models in graph-level anomaly detection, particularly in effectively capturing global anomaly representations and spectral characteristics.
Abstract:Building natural language interfaces typically uses a semantic parser to parse the user's natural language and convert it into structured \textbf{S}emantic \textbf{L}ogic \textbf{F}orms (SLFs). The mainstream approach is to adopt a sequence-to-sequence framework, which requires that natural language commands and SLFs must be represented serially. Since a single natural language may have multiple SLFs or multiple natural language commands may have the same SLF, training a sequence-to-sequence model is sensitive to the choice among them, a phenomenon recorded as "order matters". To solve this problem, we propose a novel neural network, SLFNet, which firstly incorporates dependent syntactic information as prior knowledge and can capture the long-range interactions between contextual information and words. Secondly construct semantic probability graphs to obtain local dependencies between predictor variables. Finally we propose the Multi-Head SLF Attention mechanism to synthesize SLFs from natural language commands based on Sequence-to-Slots. Experiments show that SLFNet achieves state-of-the-art performance on the ChineseQCI-TS and Okapi datasets, and competitive performance on the ATIS dataset.
Abstract:This paper proposes a two-stage framework named ST-PAD for spatio-temporal fluid dynamics modeling in the field of earth sciences, aiming to achieve high-precision simulation and prediction of fluid dynamics through spatio-temporal physics awareness and parameter diffusion guidance. In the upstream stage, we design a vector quantization reconstruction module with temporal evolution characteristics, ensuring balanced and resilient parameter distribution by introducing general physical constraints. In the downstream stage, a diffusion probability network involving parameters is utilized to generate high-quality future states of fluids, while enhancing the model's generalization ability by perceiving parameters in various physical setups. Extensive experiments on multiple benchmark datasets have verified the effectiveness and robustness of the ST-PAD framework, which showcase that ST-PAD outperforms current mainstream models in fluid dynamics modeling and prediction, especially in effectively capturing local representations and maintaining significant advantages in OOD generations.
Abstract:Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task. In recent years, Graph Neural Networks(GNN) have been widely applied to GFD, characterizing the anomalous possibility of a node by aggregating neighbor information. However, fraud graphs are inherently heterophilic, thus most of GNNs perform poorly due to their assumption of homophily. In addition, due to the existence of heterophily and class imbalance problem, the existing models do not fully utilize the precious node label information. To address the above issues, this paper proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector includes a hybrid filtering module and a local environmental constraint module, the two modules are utilized to solve heterophily and label utilization problem respectively. The first module starts from the perspective of the spectral domain, and solves the heterophily problem to a certain extent. Specifically, it divides the spectrum into multiple mixed frequency bands according to the correlation between spectrum energy distribution and heterophily. Then in order to make full use of the node label information, a local environmental constraint module is adaptively designed. The comprehensive experimental results on four real-world fraud detection datasets show that SEC-GFD outperforms other competitive graph-based fraud detectors.
Abstract:Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority. It has gained substantial attention in various domains of information security, including network intrusion, financial fraud, and malicious comments, et al. Existing methods are primarily developed in an unsupervised manner due to the challenge in obtaining labeled data. For lack of guidance from prior knowledge in unsupervised manner, the identified anomalies may prove to be data noise or individual data instances. In real-world scenarios, a limited batch of labeled anomalies can be captured, making it crucial to investigate the few-shot problem in graph anomaly detection. Taking advantage of this potential, we propose a novel few-shot Graph Anomaly Detection model called FMGAD (Few-shot Message-Enhanced Contrastive-based Graph Anomaly Detector). FMGAD leverages a self-supervised contrastive learning strategy within and across views to capture intrinsic and transferable structural representations. Furthermore, we propose the Deep-GNN message-enhanced reconstruction module, which extensively exploits the few-shot label information and enables long-range propagation to disseminate supervision signals to deeper unlabeled nodes. This module in turn assists in the training of self-supervised contrastive learning. Comprehensive experimental results on six real-world datasets demonstrate that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
Abstract:In this paper, we investigate a self-sensing intelligent reflecting surface (IRS) aided millimeter wave (mmWave) integrated sensing and communication (ISAC) system. Unlike the conventional purely passive IRS, the self-sensing IRS can effectively reduce the path loss of sensing-related links, thus rendering it advantageous in ISAC systems. Aiming to jointly sense the target/scatterer/user positions as well as estimate the sensing and communication (SAC) channels in the considered system, we propose a two-phase transmission scheme, where the coarse and refined sensing/channel estimation (CE) results are respectively obtained in the first phase (using scanning-based IRS reflection coefficients) and second phase (using optimized IRS reflection coefficients). For each phase, an angle-based sensing turbo variational Bayesian inference (AS-TVBI) algorithm, which combines the VBI, messaging passing and expectation-maximization (EM) methods, is developed to solve the considered joint location sensing and CE problem. The proposed algorithm effectively exploits the partial overlapping structured (POS) sparsity and 2-dimensional (2D) block sparsity inherent in the SAC channels to enhance the overall performance. Based on the estimation results from the first phase, we formulate a Cram\'{e}r-Rao bound (CRB) minimization problem for optimizing IRS reflection coefficients, and through proper reformulations, a low-complexity manifold-based optimization algorithm is proposed to solve this problem. Simulation results are provided to verify the superiority of the proposed transmission scheme and associated algorithms.
Abstract:Anomaly detection aims to detect data that do not conform to regular patterns, and such data is also called outliers. The anomalies to be detected are often tiny in proportion, containing crucial information, and are suitable for application scenes like intrusion detection, fraud detection, fault diagnosis, e-commerce platforms, et al. However, in many realistic scenarios, only the samples following normal behavior are observed, while we can hardly obtain any anomaly information. To address such problem, we propose an anomaly detection method GALDetector which is combined of global and local information based on observed normal samples. The proposed method can be divided into a three-stage method. Firstly, the global similar normal scores and the local sparsity scores of unlabeled samples are computed separately. Secondly, potential anomaly samples are separated from the unlabeled samples corresponding to these two scores and corresponding weights are assigned to the selected samples. Finally, a weighted anomaly detector is trained by loads of samples, then the detector is utilized to identify else anomalies. To evaluate the effectiveness of the proposed method, we conducted experiments on three categories of real-world datasets from diverse domains, and experimental results show that our method achieves better performance when compared with other state-of-the-art methods.