Abstract:In practice, physical spatiotemporal forecasting can suffer from data scarcity, because collecting large-scale data is non-trivial, especially for extreme events. Hence, we propose \method{}, a novel probabilistic framework to realize iterative self-training with new self-ensemble strategies, achieving better physical consistency and generalization on extreme events. Following any base forecasting model, we can encode its deterministic outputs into a latent space and retrieve multiple codebook entries to generate probabilistic outputs. Then BeamVQ extends the beam search from discrete spaces to the continuous state spaces in this field. We can further employ domain-specific metrics (e.g., Critical Success Index for extreme events) to filter out the top-k candidates and develop the new self-ensemble strategy by combining the high-quality candidates. The self-ensemble can not only improve the inference quality and robustness but also iteratively augment the training datasets during continuous self-training. Consequently, BeamVQ realizes the exploration of rare but critical phenomena beyond the original dataset. Comprehensive experiments on different benchmarks and backbones show that BeamVQ consistently reduces forecasting MSE (up to 39%), enhancing extreme events detection and proving its effectiveness in handling data scarcity.
Abstract:The unusually warm sea surface temperature events known as marine heatwaves (MHWs) have a profound impact on marine ecosystems. Accurate prediction of extreme MHWs has significant scientific and financial worth. However, existing methods still have certain limitations, especially in the most extreme MHWs. In this study, to address these issues, based on the physical nature of MHWs, we created a novel deep learning neural network that is capable of accurate 10-day MHW forecasting. Our framework significantly improves the forecast ability of extreme MHWs through two specially designed modules inspired by numerical models: a coupler and a probabilistic data argumentation. The coupler simulates the driving effect of atmosphere on MHWs while the probabilistic data argumentation approaches significantly boost the forecast ability of extreme MHWs based on the idea of ensemble forecast. Compared with traditional numerical prediction, our framework has significantly higher accuracy and requires fewer computational resources. What's more, explainable AI methods show that wind forcing is the primary driver of MHW evolution and reveal its relation with air-sea heat exchange. Overall, our model provides a framework for understanding MHWs' driving processes and operational forecasts in the future.