Abstract:This paper considers an online reinforcement learning algorithm that leverages pre-collected data (passive memory) from the environment for online interaction. We show that using passive memory improves performance and further provide theoretical guarantees for regret that turns out to be near-minimax optimal. Results show that the quality of passive memory determines sub-optimality of the incurred regret. The proposed approach and results hold in both continuous and discrete state-action spaces.
Abstract:This paper introduces a federated learning framework that enables over-the-air computation via digital communications, using a new joint source-channel coding scheme. Without relying on channel state information at devices, this scheme employs lattice codes to both quantize model parameters and exploit interference from the devices. We propose a novel receiver structure at the server, designed to reliably decode an integer combination of the quantized model parameters as a lattice point for the purpose of aggregation. We present a mathematical approach to derive a convergence bound for the proposed scheme and offer design remarks. In this context, we suggest an aggregation metric and a corresponding algorithm to determine effective integer coefficients for the aggregation in each communication round. Our results illustrate that, regardless of channel dynamics and data heterogeneity, our scheme consistently delivers superior learning accuracy across various parameters and markedly surpasses other over-the-air methodologies.
Abstract:Large language models (LLMs) have exhibited impressive capabilities in various domains, particularly in general language understanding. However these models, trained on massive text data, may not be finely optimized for specific tasks triggered by instructions. Continual instruction tuning is crucial to adapt LLMs to evolving tasks and domains, ensuring their effectiveness and relevance across a wide range of applications. In the context of continual instruction tuning, where models are sequentially trained on different tasks, catastrophic forgetting can occur, leading to performance degradation on previously learned tasks. This work addresses the catastrophic forgetting in continual instruction learning for LLMs through a switching mechanism for routing computations to parameter-efficient tuned models. We demonstrate the effectiveness of our method through experiments on continual instruction tuning of different natural language generation tasks.
Abstract:We consider the fractional influence maximization problem, i.e., identifying users on a social network to be incentivized with potentially partial discounts to maximize the influence on the network. The larger the discount given to a user, the higher the likelihood of its activation (adopting a new product or innovation), who then attempts to activate its neighboring users, causing a cascade effect of influence through the network. Our goal is to devise efficient algorithms that assign initial discounts to the network's users to maximize the total number of activated users at the end of the cascade, subject to a constraint on the total sum of discounts given. In general, the activation likelihood could be any non-decreasing function of the discount, whereas, our focus lies on the case when the activation likelihood is an affine function of the discount, potentially varying across different users. As this problem is shown to be NP-hard, we propose and analyze an efficient (1-1/e)-approximation algorithm. Furthermore, we run experiments on real-world social networks to show the performance and scalability of our method.
Abstract:This study explores the sources of instability in maintaining cultural personas and opinions within multi-agent LLM systems. Drawing on simulations of inter-cultural collaboration and debate, we analyze agents' pre- and post-discussion private responses alongside chat transcripts to assess the stability of cultural personas and the impact of opinion diversity on group outcomes. Our findings suggest that multi-agent discussions can encourage collective decisions that reflect diverse perspectives, yet this benefit is tempered by the agents' susceptibility to conformity due to perceived peer pressure and challenges in maintaining consistent personas and opinions. Counterintuitively, instructions that encourage debate in support of one's opinions increase the rate of inconstancy. Without addressing the factors we identify, the full potential of multi-agent frameworks for producing more culturally diverse AI outputs will remain untapped.
Abstract:This paper introduces a universal federated learning framework that enables over-the-air computation via digital communications, using a new joint source-channel coding scheme. Without relying on channel state information at devices, this scheme employs lattice codes to both quantize model parameters and exploit interference from the devices. A novel two-layer receiver structure at the server is designed to reliably decode an integer combination of the quantized model parameters as a lattice point for the purpose of aggregation. Numerical experiments validate the effectiveness of the proposed scheme. Even with the challenges posed by channel conditions and device heterogeneity, the proposed scheme markedly surpasses other over-the-air FL strategies.
Abstract:Even though large language models (LLMs) have demonstrated remarkable capability in solving various natural language tasks, the capability of an LLM to follow human instructions is still a concern. Recent works have shown great improvements in the instruction-following capability via additional training for instruction-following tasks. However, the mechanisms responsible for effective instruction-following capabilities remain inadequately understood. Here, we introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model. Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning. We also demonstrate how this phenomenon assists the model in handling unseen instances and validate our results in a more realistic setting.
Abstract:Large-scale pretraining and instruction tuning have been successful for training general-purpose language models with broad competencies. However, extending to general-purpose vision-language models is challenging due to the distributional diversity in visual inputs. A recent line of work explores vision-language instruction tuning, taking inspiration from the Query Transformer (QFormer) approach proposed in BLIP-2 models for bridging frozen modalities. However, these approaches rely heavily on large-scale multi-modal pretraining for representation learning before eventual finetuning, incurring a huge computational overhead, poor scaling, and limited accessibility. To that end, we propose a more efficient method for QFormer-based vision-language alignment and demonstrate the effectiveness of our strategy compared to existing baselines in improving the efficiency of vision-language pretraining.
Abstract:Abid et al. (2021) showed a tendency in GPT-3 to generate violent completions when prompted about Muslims, compared with other religions. Two pre-registered replication attempts found few violent completions and only the weakest anti-Muslim bias in the Instruct version, fine-tuned to eliminate biased and toxic outputs. However, more pre-registered experiments showed that using common names associated with the religions in prompts increases several-fold the rate of violent completions, revealing a highly significant second-order bias against Muslims. Our content analysis revealed religion-specific violent themes containing highly offensive ideas regardless of prompt format. Replications with ChatGPT suggest that any effects of GPT-3's de-biasing have disappeared with continued model development, as this newer model showed both a strong Muslim-violence bias and rates of violent completions closer to Abid et al. (2021). Our results show the need for continual de-biasing of models in ways that address higher-order associations.
Abstract:Constructing model-agnostic group equivariant networks, such as equitune (Basu et al., 2023b) and its generalizations (Kim et al., 2023), can be computationally expensive for large product groups. We address this by providing efficient model-agnostic equivariant designs for two related problems: one where the network has multiple inputs each with potentially different groups acting on them, and another where there is a single input but the group acting on it is a large product group. For the first design, we initially consider a linear model and characterize the entire equivariant space that satisfies this constraint. This characterization gives rise to a novel fusion layer between different channels that satisfies an invariance-symmetry (IS) constraint, which we call an IS layer. We then extend this design beyond linear models, similar to equitune, consisting of equivariant and IS layers. We also show that the IS layer is a universal approximator of invariant-symmetric functions. Inspired by the first design, we use the notion of the IS property to design a second efficient model-agnostic equivariant design for large product groups acting on a single input. For the first design, we provide experiments on multi-image classification where each view is transformed independently with transformations such as rotations. We find equivariant models are robust to such transformations and perform competitively otherwise. For the second design, we consider three applications: language compositionality on the SCAN dataset to product groups; fairness in natural language generation from GPT-2 to address intersectionality; and robust zero-shot image classification with CLIP. Overall, our methods are simple and general, competitive with equitune and its variants, while also being computationally more efficient.