Abstract:Large language models (LLMs) have exhibited impressive capabilities in various domains, particularly in general language understanding. However these models, trained on massive text data, may not be finely optimized for specific tasks triggered by instructions. Continual instruction tuning is crucial to adapt LLMs to evolving tasks and domains, ensuring their effectiveness and relevance across a wide range of applications. In the context of continual instruction tuning, where models are sequentially trained on different tasks, catastrophic forgetting can occur, leading to performance degradation on previously learned tasks. This work addresses the catastrophic forgetting in continual instruction learning for LLMs through a switching mechanism for routing computations to parameter-efficient tuned models. We demonstrate the effectiveness of our method through experiments on continual instruction tuning of different natural language generation tasks.
Abstract:Even though large language models (LLMs) have demonstrated remarkable capability in solving various natural language tasks, the capability of an LLM to follow human instructions is still a concern. Recent works have shown great improvements in the instruction-following capability via additional training for instruction-following tasks. However, the mechanisms responsible for effective instruction-following capabilities remain inadequately understood. Here, we introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model. Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning. We also demonstrate how this phenomenon assists the model in handling unseen instances and validate our results in a more realistic setting.
Abstract:The Transformer architecture has become prominent in developing large causal language models. However, mechanisms to explain its capabilities are not well understood. Focused on the training process, here we establish a meta-learning view of the Transformer architecture when trained for the causal language modeling task, by explicating an inner optimization process that may happen within the Transformer. Further, from within the inner optimization, we discover and theoretically analyze a special characteristic of the norms of learned token representations within Transformer-based causal language models. Our analysis is supported by experiments conducted on pre-trained large language models and real-world data.