Abstract:Multimodal learning seeks to combine data from multiple input sources to enhance the performance of different downstream tasks. In real-world scenarios, performance can degrade substantially if some input modalities are missing. Existing methods that can handle missing modalities involve custom training or adaptation steps for each input modality combination. These approaches are either tied to specific modalities or become computationally expensive as the number of input modalities increases. In this paper, we propose Masked Modality Projection (MMP), a method designed to train a single model that is robust to any missing modality scenario. We achieve this by randomly masking a subset of modalities during training and learning to project available input modalities to estimate the tokens for the masked modalities. This approach enables the model to effectively learn to leverage the information from the available modalities to compensate for the missing ones, enhancing missing modality robustness. We conduct a series of experiments with various baseline models and datasets to assess the effectiveness of this strategy. Experiments demonstrate that our approach improves robustness to different missing modality scenarios, outperforming existing methods designed for missing modalities or specific modality combinations.
Abstract:Diffusion models can generate a variety of high-quality images by modeling complex data distributions. Trained diffusion models can also be very effective image priors for solving inverse problems. Most of the existing diffusion-based methods integrate data consistency steps within the diffusion reverse sampling process. The data consistency steps rely on an approximate likelihood function. In this paper, we show that the existing approximations are either insufficient or computationally inefficient. To address these issues, we propose a unified likelihood approximation method that incorporates a covariance correction term to enhance the performance and avoids propagating gradients through the diffusion model. The correction term, when integrated into the reverse diffusion sampling process, achieves better convergence towards the true data posterior for selected distributions and improves performance on real-world natural image datasets. Furthermore, we present an efficient way to factorize and invert the covariance matrix of the likelihood function for several inverse problems. We present comprehensive experiments to demonstrate the effectiveness of our method over several existing approaches.
Abstract:Machine unlearning methods seek to revise pretrained models such that effects of certain training samples can be removed. In addition to effective erasure, low computational cost and general utility retention are also highly desirable. Existing unlearning methods usually involve iterative updates over the model parameters, which incurs a high computational cost. In this work, we propose an efficient method that only requires a one-time gradient computation, with which we modify only a single layer of model parameters. Specifically, we first identify a small number of model layers that lie on the Pareto front of high forget importance and low retain influence as critical layers. Then we search for a suitable step size and take a step along the gradient direction of a single critical layer while keeping other layers frozen. This method is highly modular and can be used to unlearn multiple concepts simultaneously in a controllable manner. We demonstrate the effectiveness and efficiency of this method on various models including CLIP, stable diffusion, and VLMs, surpassing other state-of-the-art methods.
Abstract:We introduce transformation-dependent adversarial attacks, a new class of threats where a single additive perturbation can trigger diverse, controllable mis-predictions by systematically transforming the input (e.g., scaling, blurring, compression). Unlike traditional attacks with static effects, our perturbations embed metamorphic properties to enable different adversarial attacks as a function of the transformation parameters. We demonstrate the transformation-dependent vulnerability across models (e.g., convolutional networks and vision transformers) and vision tasks (e.g., image classification and object detection). Our proposed geometric and photometric transformations enable a range of targeted errors from one crafted input (e.g., higher than 90% attack success rate for classifiers). We analyze effects of model architecture and type/variety of transformations on attack effectiveness. This work forces a paradigm shift by redefining adversarial inputs as dynamic, controllable threats. We highlight the need for robust defenses against such multifaceted, chameleon-like perturbations that current techniques are ill-prepared for.
Abstract:Recent studies reveal that integrating new modalities into Large Language Models (LLMs), such as Vision-Language Models (VLMs), creates a new attack surface that bypasses existing safety training techniques like Supervised Fine-tuning (SFT) and Reinforcement Learning with Human Feedback (RLHF). While further SFT and RLHF-based safety training can be conducted in multi-modal settings, collecting multi-modal training datasets poses a significant challenge. Inspired by the structural design of recent multi-modal models, where, regardless of the combination of input modalities, all inputs are ultimately fused into the language space, we aim to explore whether unlearning solely in the textual domain can be effective for cross-modality safety alignment. Our evaluation across six datasets empirically demonstrates the transferability -- textual unlearning in VLMs significantly reduces the Attack Success Rate (ASR) to less than 8\% and in some cases, even as low as nearly 2\% for both text-based and vision-text-based attacks, alongside preserving the utility. Moreover, our experiments show that unlearning with a multi-modal dataset offers no potential benefits but incurs significantly increased computational demands, possibly up to 6 times higher.
Abstract:The primary focus of Neural Representation for Videos (NeRV) is to effectively model its spatiotemporal consistency. However, current NeRV systems often face a significant issue of spatial inconsistency, leading to decreased perceptual quality. To address this issue, we introduce the Pyramidal Neural Representation for Videos (PNeRV), which is built on a multi-scale information connection and comprises a lightweight rescaling operator, Kronecker Fully-connected layer (KFc), and a Benign Selective Memory (BSM) mechanism. The KFc, inspired by the tensor decomposition of the vanilla Fully-connected layer, facilitates low-cost rescaling and global correlation modeling. BSM merges high-level features with granular ones adaptively. Furthermore, we provide an analysis based on the Universal Approximation Theory of the NeRV system and validate the effectiveness of the proposed PNeRV.We conducted comprehensive experiments to demonstrate that PNeRV surpasses the performance of contemporary NeRV models, achieving the best results in video regression on UVG and DAVIS under various metrics (PSNR, SSIM, LPIPS, and FVD). Compared to vanilla NeRV, PNeRV achieves a +4.49 dB gain in PSNR and a 231% increase in FVD on UVG, along with a +3.28 dB PSNR and 634% FVD increase on DAVIS.
Abstract:Plug-and-Play Priors (PnP) is a well-known class of methods for solving inverse problems in computational imaging. PnP methods combine physical forward models with learned prior models specified as image denoisers. A common issue with the learned models is that of a performance drop when there is a distribution shift between the training and testing data. Test-time training (TTT) was recently proposed as a general strategy for improving the performance of learned models when training and testing data come from different distributions. In this paper, we propose PnP-TTT as a new method for overcoming distribution shifts in PnP. PnP-TTT uses deep equilibrium learning (DEQ) for optimizing a self-supervised loss at the fixed points of PnP iterations. PnP-TTT can be directly applied on a single test sample to improve the generalization of PnP. We show through simulations that given a sufficient number of measurements, PnP-TTT enables the use of image priors trained on natural images for image reconstruction in magnetic resonance imaging (MRI).
Abstract:Existing 3D human pose estimation methods perform remarkably well in both monocular and multi-view settings. However, their efficacy diminishes significantly in the presence of heavy occlusions, which limits their practical utility. For video sequences, temporal continuity can help infer accurate poses, especially in heavily occluded frames. In this paper, we aim to leverage this potential of temporal continuity through human motion priors, coupled with large-scale pre-training on 3D poses and self-supervised learning, to enhance 3D pose estimation in a given video sequence. This leads to a temporally continuous 3D pose estimate on unlabelled in-the-wild videos, which may contain occlusions, while exclusively relying on pre-trained 3D pose models. We propose an unsupervised method named TEMP3D that aligns a motion prior model on a given in-the-wild video using existing SOTA single image-based 3D pose estimation methods to give temporally continuous output under occlusions. To evaluate our method, we test it on the Occluded Human3.6M dataset, our custom-built dataset which contains significantly large (up to 100%) human body occlusions incorporated into the Human3.6M dataset. We achieve SOTA results on Occluded Human3.6M and the OcMotion dataset while maintaining competitive performance on non-occluded data. URL: https://sites.google.com/ucr.edu/temp3d
Abstract:Multimodal learning seeks to utilize data from multiple sources to improve the overall performance of downstream tasks. It is desirable for redundancies in the data to make multimodal systems robust to missing or corrupted observations in some correlated modalities. However, we observe that the performance of several existing multimodal networks significantly deteriorates if one or multiple modalities are absent at test time. To enable robustness to missing modalities, we propose simple and parameter-efficient adaptation procedures for pretrained multimodal networks. In particular, we exploit low-rank adaptation and modulation of intermediate features to compensate for the missing modalities. We demonstrate that such adaptation can partially bridge performance drop due to missing modalities and outperform independent, dedicated networks trained for the available modality combinations in some cases. The proposed adaptation requires extremely small number of parameters (e.g., fewer than 0.7% of the total parameters in most experiments). We conduct a series of experiments to highlight the robustness of our proposed method using diverse datasets for RGB-thermal and RGB-Depth semantic segmentation, multimodal material segmentation, and multimodal sentiment analysis tasks. Our proposed method demonstrates versatility across various tasks and datasets, and outperforms existing methods for robust multimodal learning with missing modalities.
Abstract:Deep learning-based methods deliver state-of-the-art performance for solving inverse problems that arise in computational imaging. These methods can be broadly divided into two groups: (1) learn a network to map measurements to the signal estimate, which is known to be fragile; (2) learn a prior for the signal to use in an optimization-based recovery. Despite the impressive results from the latter approach, many of these methods also lack robustness to shifts in data distribution, measurements, and noise levels. Such domain shifts result in a performance gap and in some cases introduce undesired artifacts in the estimated signal. In this paper, we explore the qualitative and quantitative effects of various domain shifts and propose a flexible and parameter efficient framework that adapt pretrained networks to such shifts. We demonstrate the effectiveness of our method for a number of natural image, MRI, and CT reconstructions tasks under domain, measurement model, and noise-level shifts. Our experiments demonstrate that our method provides significantly better performance and parameter efficiency compared to existing domain adaptation techniques.