Abstract:Visual storytelling often uses nontypical aspect-ratio images like scroll paintings, comic strips, and panoramas to create an expressive and compelling narrative. While generative AI has achieved great success and shown the potential to reshape the creative industry, it remains a challenge to generate coherent and engaging content with arbitrary size and controllable style, concept, and layout, all of which are essential for visual storytelling. To overcome the shortcomings of previous methods including repetitive content, style inconsistency, and lack of controllability, we propose MagicScroll, a multi-layered, progressive diffusion-based image generation framework with a novel semantic-aware denoising process. The model enables fine-grained control over the generated image on object, scene, and background levels with text, image, and layout conditions. We also establish the first benchmark for nontypical aspect-ratio image generation for visual storytelling including mediums like paintings, comics, and cinematic panoramas, with customized metrics for systematic evaluation. Through comparative and ablation studies, MagicScroll showcases promising results in aligning with the narrative text, improving visual coherence, and engaging the audience. We plan to release the code and benchmark in the hope of a better collaboration between AI researchers and creative practitioners involving visual storytelling.