Abstract:Recent advances in Multimodal Large Language Models (MLLMs) have enhanced their versatility as they integrate a growing number of modalities. Considering the heavy cost of training MLLMs, it is necessary to reuse the existing ones and further extend them to more modalities through Modality-incremental Continual Learning (MCL). However, this often comes with a performance degradation in the previously learned modalities. In this work, we revisit the MCL and investigate a more severe issue it faces in contrast to traditional continual learning, that its degradation comes not only from catastrophic forgetting but also from the misalignment between the modality-agnostic and modality-specific components. To address this problem, we propose an elegantly simple MCL paradigm called "MErge then ReAlign" (MERA). Our method avoids introducing heavy training overhead or modifying the model architecture, hence is easy to deploy and highly reusable in the MLLM community. Extensive experiments demonstrate that, despite the simplicity of MERA, it shows impressive performance, holding up to a 99.84% Backward Relative Gain when extending to four modalities, achieving a nearly lossless MCL performance.
Abstract:In the era of AIGC, the demand for low-budget or even on-device applications of diffusion models emerged. In terms of compressing the Stable Diffusion models (SDMs), several approaches have been proposed, and most of them leveraged the handcrafted layer removal methods to obtain smaller U-Nets, along with knowledge distillation to recover the network performance. However, such a handcrafting manner of layer removal is inefficient and lacks scalability and generalization, and the feature distillation employed in the retraining phase faces an imbalance issue that a few numerically significant feature loss terms dominate over others throughout the retraining process. To this end, we proposed the layer pruning and normalized distillation for compressing diffusion models (LAPTOP-Diff). We, 1) introduced the layer pruning method to compress SDM's U-Net automatically and proposed an effective one-shot pruning criterion whose one-shot performance is guaranteed by its good additivity property, surpassing other layer pruning and handcrafted layer removal methods, 2) proposed the normalized feature distillation for retraining, alleviated the imbalance issue. Using the proposed LAPTOP-Diff, we compressed the U-Nets of SDXL and SDM-v1.5 for the most advanced performance, achieving a minimal 4.0% decline in PickScore at a pruning ratio of 50% while the comparative methods' minimal PickScore decline is 8.2%. We will release our code.