School of Mathematical Science, Peking University
Abstract:Multi-agent collaborative perception has emerged as a widely recognized technology in the field of autonomous driving in recent years. However, current collaborative perception predominantly relies on LiDAR point clouds, with significantly less attention given to methods using camera images. This severely impedes the development of budget-constrained collaborative systems and the exploitation of the advantages offered by the camera modality. This work proposes an instance-level fusion transformer for visual collaborative perception (IFTR), which enhances the detection performance of camera-only collaborative perception systems through the communication and sharing of visual features. To capture the visual information from multiple agents, we design an instance feature aggregation that interacts with the visual features of individual agents using predefined grid-shaped bird eye view (BEV) queries, generating more comprehensive and accurate BEV features. Additionally, we devise a cross-domain query adaptation as a heuristic to fuse 2D priors, implicitly encoding the candidate positions of targets. Furthermore, IFTR optimizes communication efficiency by sending instance-level features, achieving an optimal performance-bandwidth trade-off. We evaluate the proposed IFTR on a real dataset, DAIR-V2X, and two simulated datasets, OPV2V and V2XSet, achieving performance improvements of 57.96%, 9.23% and 12.99% in AP@70 metrics compared to the previous SOTAs, respectively. Extensive experiments demonstrate the superiority of IFTR and the effectiveness of its key components. The code is available at https://github.com/wangsh0111/IFTR.
Abstract:Identifying highlight moments of raw video materials is crucial for improving the efficiency of editing videos that are pervasive on internet platforms. However, the extensive work of manually labeling footage has created obstacles to applying supervised methods to videos of unseen categories. The absence of an audio modality that contains valuable cues for highlight detection in many videos also makes it difficult to use multimodal strategies. In this paper, we propose a novel model with cross-modal perception for unsupervised highlight detection. The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task. To achieve unsupervised highlight detection, we investigate the latent representations of the network and propose the representation activation sequence learning (RASL) module with k-point contrastive learning to learn significant representation activations. To connect the visual modality with the audio modality, we use the symmetric contrastive learning (SCL) module to learn the paired visual and audio representations. Furthermore, an auxiliary task of masked feature vector sequence (FVS) reconstruction is simultaneously conducted during pretraining for representation enhancement. During inference, the cross-modal pretrained model can generate representations with paired visual-audio semantics given only the visual modality. The RASL module is used to output the highlight scores. The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.
Abstract:Non-linear effects in long-haul, high-speed optical fiber systems significantly hinder channel capacity. While the Digital Backward Propagation algorithm (DBP) with adaptive filter (ADF) can mitigate these effects, it suffers from an overwhelming computational complexity. Recent solutions have incorporated deep neural networks in a data-driven strategy to alleviate this complexity in the DBP model. However, these models are often limited to a specific symbol rate and channel number, necessitating retraining for different settings, their performance declines significantly under high-speed and high-power conditions. We introduce Meta-DSP, a novel data-driven nonlinear compensation model based on meta-learning that processes multi-modal data across diverse transmission rates, power levels, and channel numbers. This not only enhances signal quality but also substantially reduces the complexity of the nonlinear processing algorithm. Our model delivers a 0.7 dB increase in the Q-factor over Electronic Dispersion Compensation (EDC), and compared to DBP, it curtails computational complexity by a factor of ten while retaining comparable performance. From the perspective of the entire signal processing system, the core idea of Meta-DSP can be employed in any segment of the overall communication system to enhance the model's scalability and generalization performance. Our research substantiates Meta-DSP's proficiency in addressing the critical parameters defining optical communication networks.
Abstract:To further improve the speaking styles of synthesized speeches, current text-to-speech (TTS) synthesis systems commonly employ reference speeches to stylize their outputs instead of just the input texts. These reference speeches are obtained by manual selection which is resource-consuming, or selected by semantic features. However, semantic features contain not only style-related information, but also style irrelevant information. The information irrelevant to speaking style in the text could interfere the reference audio selection and result in improper speaking styles. To improve the reference selection, we propose Contrastive Acoustic-Linguistic Module (CALM) to extract the Style-related Text Feature (STF) from the text. CALM optimizes the correlation between the speaking style embedding and the extracted STF with contrastive learning. Thus, a certain number of the most appropriate reference speeches for the input text are selected by retrieving the speeches with the top STF similarities. Then the style embeddings are weighted summarized according to their STF similarities and used to stylize the synthesized speech of TTS. Experiment results demonstrate the effectiveness of our proposed approach, with both objective evaluations and subjective evaluations on the speaking styles of the synthesized speeches outperform a baseline approach with semantic-feature-based reference selection.
Abstract:One-shot object detection (OSOD) aims to detect all object instances towards the given category specified by a query image. Most existing studies in OSOD endeavor to explore effective cross-image correlation and alleviate the semantic feature misalignment, however, ignoring the phenomenon of the model bias towards the base classes and the generalization degradation on the novel classes. Observing this, we propose a novel framework, namely Base-class Suppression and Prior Guidance (BSPG) network to overcome the problem. Specifically, the objects of base categories can be explicitly detected by a base-class predictor and adaptively eliminated by our base-class suppression module. Moreover, a prior guidance module is designed to calculate the correlation of high-level features in a non-parametric manner, producing a class-agnostic prior map to provide the target features with rich semantic cues and guide the subsequent detection process. Equipped with the proposed two modules, we endow the model with a strong discriminative ability to distinguish the target objects from distractors belonging to the base classes. Extensive experiments show that our method outperforms the previous techniques by a large margin and achieves new state-of-the-art performance under various evaluation settings.