Abstract:Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines.
Abstract:Speaker anonymization is an effective privacy protection solution that conceals the speaker's identity while preserving the linguistic content and paralinguistic information of the original speech. To establish a fair benchmark and facilitate comparison of speaker anonymization systems, the VoicePrivacy Challenge (VPC) was held in 2020 and 2022, with a new edition planned for 2024. In this paper, we describe our proposed speaker anonymization system for VPC 2024. Our system employs a disentangled neural codec architecture and a serial disentanglement strategy to gradually disentangle the global speaker identity and time-variant linguistic content and paralinguistic information. We introduce multiple distillation methods to disentangle linguistic content, speaker identity, and emotion. These methods include semantic distillation, supervised speaker distillation, and frame-level emotion distillation. Based on these distillations, we anonymize the original speaker identity using a weighted sum of a set of candidate speaker identities and a randomly generated speaker identity. Our system achieves the best trade-off of privacy protection and emotion preservation in VPC 2024.
Abstract:Rap, a prominent genre of vocal performance, remains underexplored in vocal generation. General vocal synthesis depends on precise note and duration inputs, requiring users to have related musical knowledge, which limits flexibility. In contrast, rap typically features simpler melodies, with a core focus on a strong rhythmic sense that harmonizes with accompanying beats. In this paper, we propose Freestyler, the first system that generates rapping vocals directly from lyrics and accompaniment inputs. Freestyler utilizes language model-based token generation, followed by a conditional flow matching model to produce spectrograms and a neural vocoder to restore audio. It allows a 3-second prompt to enable zero-shot timbre control. Due to the scarcity of publicly available rap datasets, we also present RapBank, a rap song dataset collected from the internet, alongside a meticulously designed processing pipeline. Experimental results show that Freestyler produces high-quality rapping voice generation with enhanced naturalness and strong alignment with accompanying beats, both stylistically and rhythmically.
Abstract:Speaker anonymization is an effective privacy protection solution designed to conceal the speaker's identity while preserving the linguistic content and para-linguistic information of the original speech. While most prior studies focus solely on a single language, an ideal speaker anonymization system should be capable of handling multiple languages. This paper proposes MUSA, a Multi-lingual Speaker Anonymization approach that employs a serial disentanglement strategy to perform a step-by-step disentanglement from a global time-invariant representation to a temporal time-variant representation. By utilizing semantic distillation and self-supervised speaker distillation, the serial disentanglement strategy can avoid strong inductive biases and exhibit superior generalization performance across different languages. Meanwhile, we propose a straightforward anonymization strategy that employs empty embedding with zero values to simulate the speaker identity concealment process, eliminating the need for conversion to a pseudo-speaker identity and thereby reducing the complexity of speaker anonymization process. Experimental results on VoicePrivacy official datasets and multi-lingual datasets demonstrate that MUSA can effectively protect speaker privacy while preserving linguistic content and para-linguistic information.
Abstract:Streaming voice conversion has become increasingly popular for its potential in real-time applications. The recently proposed DualVC 2 has achieved robust and high-quality streaming voice conversion with a latency of about 180ms. Nonetheless, the recognition-synthesis framework hinders end-to-end optimization, and the instability of automatic speech recognition (ASR) model with short chunks makes it challenging to further reduce latency. To address these issues, we propose an end-to-end model, DualVC 3. With speaker-independent semantic tokens to guide the training of the content encoder, the dependency on ASR is removed and the model can operate under extremely small chunks, with cascading errors eliminated. A language model is trained on the content encoder output to produce pseudo context by iteratively predicting future frames, providing more contextual information for the decoder to improve conversion quality. Experimental results demonstrate that DualVC 3 achieves comparable performance to DualVC 2 in subjective and objective metrics, with a latency of only 50 ms.
Abstract:Speaker anonymization is an effective privacy protection solution that aims to conceal the speaker's identity while preserving the naturalness and distinctiveness of the original speech. Mainstream approaches use an utterance-level vector from a pre-trained automatic speaker verification (ASV) model to represent speaker identity, which is then averaged or modified for anonymization. However, these systems suffer from deterioration in the naturalness of anonymized speech, degradation in speaker distinctiveness, and severe privacy leakage against powerful attackers. To address these issues and especially generate more natural and distinctive anonymized speech, we propose a novel speaker anonymization approach that models a matrix related to speaker identity and transforms it into an anonymized singular value transformation-assisted matrix to conceal the original speaker identity. Our approach extracts frame-level speaker vectors from a pre-trained ASV model and employs an attention mechanism to create a speaker-score matrix and speaker-related tokens. Notably, the speaker-score matrix acts as the weight for the corresponding speaker-related token, representing the speaker's identity. The singular value transformation-assisted matrix is generated by recomposing the decomposed orthonormal eigenvectors matrix and non-linear transformed singular through Singular Value Decomposition (SVD). Experiments on VoicePrivacy Challenge datasets demonstrate the effectiveness of our approach in protecting speaker privacy under all attack scenarios while maintaining speech naturalness and distinctiveness.
Abstract:Accent transfer aims to transfer an accent from a source speaker to synthetic speech in the target speaker's voice. The main challenge is how to effectively disentangle speaker timbre and accent which are entangled in speech. This paper presents a VITS-based end-to-end accent transfer model named Accent-VITS.Based on the main structure of VITS, Accent-VITS makes substantial improvements to enable effective and stable accent transfer.We leverage a hierarchical CVAE structure to model accent pronunciation information and acoustic features, respectively, using bottleneck features and mel spectrums as constraints.Moreover, the text-to-wave mapping in VITS is decomposed into text-to-accent and accent-to-wave mappings in Accent-VITS. In this way, the disentanglement of accent and speaker timbre becomes be more stable and effective.Experiments on multi-accent and Mandarin datasets show that Accent-VITS achieves higher speaker similarity, accent similarity and speech naturalness as compared with a strong baseline.
Abstract:This paper introduces the T23 team's system submitted to the Singing Voice Conversion Challenge 2023. Following the recognition-synthesis framework, our singing conversion model is based on VITS, incorporating four key modules: a prior encoder, a posterior encoder, a decoder, and a parallel bank of transposed convolutions (PBTC) module. We particularly leverage Whisper, a powerful pre-trained ASR model, to extract bottleneck features (BNF) as the input of the prior encoder. Before BNF extraction, we perform pitch perturbation to the source signal to remove speaker timbre, which effectively avoids the leakage of the source speaker timbre to the target. Moreover, the PBTC module extracts multi-scale F0 as the auxiliary input to the prior encoder, thereby capturing better pitch variations of singing. We design a three-stage training strategy to better adapt the base model to the target speaker with limited target speaker data. Official challenge results show that our system has superior performance in naturalness, ranking 1st and 2nd respectively in Task 1 and 2. Further ablation justifies the effectiveness of our system design.
Abstract:Voice conversion is becoming increasingly popular, and a growing number of application scenarios require models with streaming inference capabilities. The recently proposed DualVC attempts to achieve this objective through streaming model architecture design and intra-model knowledge distillation along with hybrid predictive coding to compensate for the lack of future information. However, DualVC encounters several problems that limit its performance. First, the autoregressive decoder has error accumulation in its nature and limits the inference speed as well. Second, the causal convolution enables streaming capability but cannot sufficiently use future information within chunks. Third, the model is unable to effectively address the noise in the unvoiced segments, lowering the sound quality. In this paper, we propose DualVC 2 to address these issues. Specifically, the model backbone is migrated to a Conformer-based architecture, empowering parallel inference. Causal convolution is replaced by non-causal convolution with dynamic chunk mask to make better use of within-chunk future information. Also, quiet attention is introduced to enhance the model's noise robustness. Experiments show that DualVC 2 outperforms DualVC and other baseline systems in both subjective and objective metrics, with only 186.4 ms latency. Our audio samples are made publicly available.
Abstract:Style voice conversion aims to transform the style of source speech to a desired style according to real-world application demands. However, the current style voice conversion approach relies on pre-defined labels or reference speech to control the conversion process, which leads to limitations in style diversity or falls short in terms of the intuitive and interpretability of style representation. In this study, we propose PromptVC, a novel style voice conversion approach that employs a latent diffusion model to generate a style vector driven by natural language prompts. Specifically, the style vector is extracted by a style encoder during training, and then the latent diffusion model is trained independently to sample the style vector from noise, with this process being conditioned on natural language prompts. To improve style expressiveness, we leverage HuBERT to extract discrete tokens and replace them with the K-Means center embedding to serve as the linguistic content, which minimizes residual style information. Additionally, we deduplicate the same discrete token and employ a differentiable duration predictor to re-predict the duration of each token, which can adapt the duration of the same linguistic content to different styles. The subjective and objective evaluation results demonstrate the effectiveness of our proposed system.