Abstract:Object parts serve as crucial intermediate representations in various downstream tasks, but part-level representation learning still has not received as much attention as other vision tasks. Previous research has established that Vision Transformer can learn instance-level attention without labels, extracting high-quality instance-level representations for boosting downstream tasks. In this paper, we achieve unsupervised part-specific attention learning using a novel paradigm and further employ the part representations to improve part discovery performance. Specifically, paired images are generated from the same image with different geometric transformations, and multiple part representations are extracted from these paired images using a novel module, named PartFormer. These part representations from the paired images are then exchanged to improve geometric transformation invariance. Subsequently, the part representations are aligned with the feature map extracted by a feature map encoder, achieving high similarity with the pixel representations of the corresponding part regions and low similarity in irrelevant regions. Finally, the geometric and semantic constraints are applied to the part representations through the intermediate results in alignment for part-specific attention learning, encouraging the PartFormer to focus locally and the part representations to explicitly include the information of the corresponding parts. Moreover, the aligned part representations can further serve as a series of reliable detectors in the testing phase, predicting pixel masks for part discovery. Extensive experiments are carried out on four widely used datasets, and our results demonstrate that the proposed method achieves competitive performance and robustness due to its part-specific attention.
Abstract:In frame-based vision, object detection faces substantial performance degradation under challenging conditions due to the limited sensing capability of conventional cameras. Event cameras output sparse and asynchronous events, providing a potential solution to solve these problems. However, effectively fusing two heterogeneous modalities remains an open issue. In this work, we propose a novel hierarchical feature refinement network for event-frame fusion. The core concept is the design of the coarse-to-fine fusion module, denoted as the cross-modality adaptive feature refinement (CAFR) module. In the initial phase, the bidirectional cross-modality interaction (BCI) part facilitates information bridging from two distinct sources. Subsequently, the features are further refined by aligning the channel-level mean and variance in the two-fold adaptive feature refinement (TAFR) part. We conducted extensive experiments on two benchmarks: the low-resolution PKU-DDD17-Car dataset and the high-resolution DSEC dataset. Experimental results show that our method surpasses the state-of-the-art by an impressive margin of $\textbf{8.0}\%$ on the DSEC dataset. Besides, our method exhibits significantly better robustness (\textbf{69.5}\% versus \textbf{38.7}\%) when introducing 15 different corruption types to the frame images. The code can be found at the link (https://github.com/HuCaoFighting/FRN).
Abstract:Combining the message-passing paradigm with the global attention mechanism has emerged as an effective framework for learning over graphs. The message-passing paradigm and the global attention mechanism fundamentally generate node embeddings based on information aggregated from a node's local neighborhood or from the whole graph. The most basic and commonly used aggregation approach is to take the sum of information from a node's local neighbourhood or from the whole graph. However, it is unknown if the dominant information is from a node itself or from the node's neighbours (or the rest of the graph nodes). Therefore, there exists information lost at each layer of embedding generation, and this information lost could be accumulated and become more serious when more layers are used in the model. In this paper, we present a differential encoding method to address the issue of information lost. The idea of our method is to encode the differential representation between the information from a node's neighbours (or the rest of the graph nodes) and that from the node itself. The obtained differential encoding is then combined with the original aggregated local or global representation to generate the updated node embedding. By integrating differential encodings, the representational ability of generated node embeddings is improved. The differential encoding method is empirically evaluated on different graph tasks on seven benchmark datasets. The results show that it is a general method that improves the message-passing update and the global attention update, advancing the state-of-the-art performance for graph representation learning on these datasets.
Abstract:In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory which goes beyond the traditional transportation elements to include street furniture objects often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following two questions. First, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Second, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our findings indicate that street view images generated from mobile LiDAR point cloud data, when paired along with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities.
Abstract:Deep neural networks enable real-time monitoring of in-vehicle driver, facilitating the timely prediction of distractions, fatigue, and potential hazards. This technology is now integral to intelligent transportation systems. Recent research has exposed unreliable cross-dataset end-to-end driver behavior recognition due to overfitting, often referred to as ``shortcut learning", resulting from limited data samples. In this paper, we introduce the Score-Softmax classifier, which addresses this issue by enhancing inter-class independence and Intra-class uncertainty. Motivated by human rating patterns, we designed a two-dimensional supervisory matrix based on marginal Gaussian distributions to train the classifier. Gaussian distributions help amplify intra-class uncertainty while ensuring the Score-Softmax classifier learns accurate knowledge. Furthermore, leveraging the summation of independent Gaussian distributed random variables, we introduced a multi-channel information fusion method. This strategy effectively resolves the multi-information fusion challenge for the Score-Softmax classifier. Concurrently, we substantiate the necessity of transfer learning and multi-dataset combination. We conducted cross-dataset experiments using the SFD, AUCDD-V1, and 100-Driver datasets, demonstrating that Score-Softmax improves cross-dataset performance without modifying the model architecture. This provides a new approach for enhancing neural network generalization. Additionally, our information fusion approach outperforms traditional methods.
Abstract:Existing multiple modality fusion methods, such as concatenation, summation, and encoder-decoder-based fusion, have recently been employed to combine modality characteristics of Hyperspectral Image (HSI) and Light Detection And Ranging (LiDAR). However, these methods consider the relationship of HSI-LiDAR signals from limited perspectives. More specifically, they overlook the contextual information across modalities of HSI and LiDAR and the intra-modality characteristics of LiDAR. In this paper, we provide a new insight into feature fusion to explore the relationships across HSI and LiDAR modalities comprehensively. An Interconnected Fusion (IF) framework is proposed. Firstly, the center patch of the HSI input is extracted and replicated to the size of the HSI input. Then, nine different perspectives in the fusion matrix are generated by calculating self-attention and cross-attention among the replicated center patch, HSI input, and corresponding LiDAR input. In this way, the intra- and inter-modality characteristics can be fully exploited, and contextual information is considered in both intra-modality and inter-modality manner. These nine interrelated elements in the fusion matrix can complement each other and eliminate biases, which can generate a multi-modality representation for classification accurately. Extensive experiments have been conducted on three widely used datasets: Trento, MUUFL, and Houston. The IF framework achieves state-of-the-art results on these datasets compared to existing approaches.
Abstract:Heatmap regression methods have dominated face alignment area in recent years while they ignore the inherent relation between different landmarks. In this paper, we propose a Sparse Local Patch Transformer (SLPT) for learning the inherent relation. The SLPT generates the representation of each single landmark from a local patch and aggregates them by an adaptive inherent relation based on the attention mechanism. The subpixel coordinate of each landmark is predicted independently based on the aggregated feature. Moreover, a coarse-to-fine framework is further introduced to incorporate with the SLPT, which enables the initial landmarks to gradually converge to the target facial landmarks using fine-grained features from dynamically resized local patches. Extensive experiments carried out on three popular benchmarks, including WFLW, 300W and COFW, demonstrate that the proposed method works at the state-of-the-art level with much less computational complexity by learning the inherent relation between facial landmarks. The code is available at the project website.
Abstract:While convolutional neural networks (CNNs) have significantly boosted the performance of face related algorithms, maintaining accuracy and efficiency simultaneously in practical use remains challenging. Recent study shows that using a cascade of hourglass modules which consist of a number of bottom-up and top-down convolutional layers can extract facial structural information for face alignment to improve accuracy. However, previous studies have shown that features produced by shallow convolutional layers are highly correspond to edges. These features could be directly used to provide the structural information without addition cost. Motivated by this intuition, we propose an efficient multitask face alignment, face tracking and head pose estimation network (ATPN). Specifically, we introduce a shortcut connection between shallow-layer features and deep-layer features to provide the structural information for face alignment and apply the CoordConv to the last few layers to provide coordinate information. The predicted facial landmarks enable us to generate a cheap heatmap which contains both geometric and appearance information for head pose estimation and it also provides attention clues for face tracking. Moreover, the face tracking task saves us the face detection procedure for each frame, which is significant to boost performance for video-based tasks. The proposed framework is evaluated on four benchmark datasets, WFLW, 300VW, WIDER Face and 300W-LP. The experimental results show that the ATPN achieves improved performance compared to previous state-of-the-art methods while having less number of parameters and FLOPS.