Abstract:Deep learning-based segmentation methods are widely utilized for detecting lesions in ultrasound images. Throughout the imaging procedure, the attenuation and scattering of ultrasound waves cause contour blurring and the formation of artifacts, limiting the clarity of the acquired ultrasound images. To overcome this challenge, we propose a contour-based probabilistic segmentation model CP-UNet, which guides the segmentation network to enhance its focus on contour during decoding. We design a novel down-sampling module to enable the contour probability distribution modeling and encoding stages to acquire global-local features. Furthermore, the Gaussian Mixture Model utilizes optimized features to model the contour distribution, capturing the uncertainty of lesion boundaries. Extensive experiments with several state-of-the-art deep learning segmentation methods on three ultrasound image datasets show that our method performs better on breast and thyroid lesions segmentation.
Abstract:Recent image generation models excel at creating high-quality images from brief captions. However, they fail to maintain consistency of multiple instances across images when encountering lengthy contexts. This inconsistency is largely due to in existing training datasets the absence of granular instance feature labeling in existing training datasets. To tackle these issues, we introduce Openstory++, a large-scale dataset combining additional instance-level annotations with both images and text. Furthermore, we develop a training methodology that emphasizes entity-centric image-text generation, ensuring that the models learn to effectively interweave visual and textual information. Specifically, Openstory++ streamlines the process of keyframe extraction from open-domain videos, employing vision-language models to generate captions that are then polished by a large language model for narrative continuity. It surpasses previous datasets by offering a more expansive open-domain resource, which incorporates automated captioning, high-resolution imagery tailored for instance count, and extensive frame sequences for temporal consistency. Additionally, we present Cohere-Bench, a pioneering benchmark framework for evaluating the image generation tasks when long multimodal context is provided, including the ability to keep the background, style, instances in the given context coherent. Compared to existing benchmarks, our work fills critical gaps in multi-modal generation, propelling the development of models that can adeptly generate and interpret complex narratives in open-domain environments. Experiments conducted within Cohere-Bench confirm the superiority of Openstory++ in nurturing high-quality visual storytelling models, enhancing their ability to address open-domain generation tasks. More details can be found at https://openstorypp.github.io/
Abstract:Focusing on stochastic programming (SP) with covariate information, this paper proposes an empirical risk minimization (ERM) method embedded within a nonconvex piecewise affine decision rule (PADR), which aims to learn the direct mapping from features to optimal decisions. We establish the nonasymptotic consistency result of our PADR-based ERM model for unconstrained problems and asymptotic consistency result for constrained ones. To solve the nonconvex and nondifferentiable ERM problem, we develop an enhanced stochastic majorization-minimization algorithm and establish the asymptotic convergence to (composite strong) directional stationarity along with complexity analysis. We show that the proposed PADR-based ERM method applies to a broad class of nonconvex SP problems with theoretical consistency guarantees and computational tractability. Our numerical study demonstrates the superior performance of PADR-based ERM methods compared to state-of-the-art approaches under various settings, with significantly lower costs, less computation time, and robustness to feature dimensions and nonlinearity of the underlying dependency.
Abstract:Background: Large language models such as ChatGPT are capable of generating grammatically perfect and human-like text content, and a large number of ChatGPT-generated texts have appeared on the Internet. However, medical texts such as clinical notes and diagnoses require rigorous validation, and erroneous medical content generated by ChatGPT could potentially lead to disinformation that poses significant harm to healthcare and the general public. Objective: This research is among the first studies on responsible and ethical AIGC (Artificial Intelligence Generated Content) in medicine. We focus on analyzing the differences between medical texts written by human experts and generated by ChatGPT, and designing machine learning workflows to effectively detect and differentiate medical texts generated by ChatGPT. Methods: We first construct a suite of datasets containing medical texts written by human experts and generated by ChatGPT. In the next step, we analyze the linguistic features of these two types of content and uncover differences in vocabulary, part-of-speech, dependency, sentiment, perplexity, etc. Finally, we design and implement machine learning methods to detect medical text generated by ChatGPT. Results: Medical texts written by humans are more concrete, more diverse, and typically contain more useful information, while medical texts generated by ChatGPT pay more attention to fluency and logic, and usually express general terminologies rather than effective information specific to the context of the problem. A BERT-based model can effectively detect medical texts generated by ChatGPT, and the F1 exceeds 95%.
Abstract:Transformer-based language models have achieved significant success in various domains. However, the data-intensive nature of the transformer architecture requires much labeled data, which is challenging in low-resource scenarios (i.e., few-shot learning (FSL)). The main challenge of FSL is the difficulty of training robust models on small amounts of samples, which frequently leads to overfitting. Here we present Mask-BERT, a simple and modular framework to help BERT-based architectures tackle FSL. The proposed approach fundamentally differs from existing FSL strategies such as prompt tuning and meta-learning. The core idea is to selectively apply masks on text inputs and filter out irrelevant information, which guides the model to focus on discriminative tokens that influence prediction results. In addition, to make the text representations from different categories more separable and the text representations from the same category more compact, we introduce a contrastive learning loss function. Experimental results on public-domain benchmark datasets demonstrate the effectiveness of Mask-BERT.
Abstract:Modern supervised learning neural network models require a large amount of manually labeled data, which makes the construction of domain-specific knowledge graphs time-consuming and labor-intensive. In parallel, although there has been much research on named entity recognition and relation extraction based on distantly supervised learning, constructing a domain-specific knowledge graph from large collections of textual data without manual annotations is still an urgent problem to be solved. In response, we propose an integrated framework for adapting and re-learning knowledge graphs from one coarse domain (biomedical) to a finer-define domain (oncology). In this framework, we apply distant-supervision on cross-domain knowledge graph adaptation. Consequently, no manual data annotation is required to train the model. We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples. Experimental results indicate that the proposed framework can perform domain adaptation and construction of knowledge graph efficiently.
Abstract:In unsupervised domain adaptation (UDA), a classifier for the target domain is trained with massive true-label data from the source domain and unlabeled data from the target domain. However, collecting fully-true-label data in the source domain is high-cost and sometimes impossible. Compared to the true labels, a complementary label specifies a class that a pattern does not belong to, hence collecting complementary labels would be less laborious than collecting true labels. Thus, in this paper, we propose a novel setting that the source domain is composed of complementary-label data, and a theoretical bound for it is first proved. We consider two cases of this setting, one is that the source domain only contains complementary-label data (completely complementary unsupervised domain adaptation, CC-UDA), and the other is that the source domain has plenty of complementary-label data and a small amount of true-label data (partly complementary unsupervised domain adaptation, PC-UDA). To this end, a complementary label adversarial network} (CLARINET) is proposed to solve CC-UDA and PC-UDA problems. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines on handwritten-digits-recognition and objects-recognition tasks.
Abstract:In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a source domain given a limited budget. To mitigate this problem, we consider a novel problem setting where the classifier for the target domain has to be trained with complementary-label data from the source domain and unlabeled data from the target domain named budget-friendly UDA (BFUDA). The key benefit is that it is much less costly to collect complementary-label source data (required by BFUDA) than collecting the true-label source data (required by ordinary UDA). To this end, the complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of the source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines.