Abstract:We propose \textit{re}CSE, a self supervised contrastive learning sentence representation framework based on feature reshaping. This framework is different from the current advanced models that use discrete data augmentation methods, but instead reshapes the input features of the original sentence, aggregates the global information of each token in the sentence, and alleviates the common problems of representation polarity and GPU memory consumption linear increase in current advanced models. In addition, our \textit{re}CSE has achieved competitive performance in semantic similarity tasks. And the experiment proves that our proposed feature reshaping method has strong universality, which can be transplanted to other self supervised contrastive learning frameworks and enhance their representation ability, even achieving state-of-the-art performance. Our code is available at https://github.com/heavenhellchen/reCSE.
Abstract:Removing multiple degradations, such as haze, rain, and blur, from real-world images poses a challenging and illposed problem. Recently, unified models that can handle different degradations have been proposed and yield promising results. However, these approaches focus on synthetic images and experience a significant performance drop when applied to realworld images. In this paper, we introduce Uni-Removal, a twostage semi-supervised framework for addressing the removal of multiple degradations in real-world images using a unified model and parameters. In the knowledge transfer stage, Uni-Removal leverages a supervised multi-teacher and student architecture in the knowledge transfer stage to facilitate learning from pretrained teacher networks specialized in different degradation types. A multi-grained contrastive loss is introduced to enhance learning from feature and image spaces. In the domain adaptation stage, unsupervised fine-tuning is performed by incorporating an adversarial discriminator on real-world images. The integration of an extended multi-grained contrastive loss and generative adversarial loss enables the adaptation of the student network from synthetic to real-world domains. Extensive experiments on real-world degraded datasets demonstrate the effectiveness of our proposed method. We compare our Uni-Removal framework with state-of-the-art supervised and unsupervised methods, showcasing its promising results in real-world image dehazing, deraining, and deblurring simultaneously.