Abstract:Recent advancements in diffusion models have shown promising results in sequential recommendation (SR). However, current diffusion-based methods still exhibit two key limitations. First, they implicitly model the diffusion process for target item embeddings rather than the discrete target item itself, leading to inconsistency in the recommendation process. Second, existing methods rely on either implicit or explicit conditional diffusion models, limiting their ability to fully capture the context of user behavior and leading to less robust target item embeddings. In this paper, we propose the Dual Conditional Diffusion Models for Sequential Recommendation (DCRec), introducing a discrete-to-continuous sequential recommendation diffusion framework. Our framework introduces a complete Markov chain to model the transition from the reversed target item representation to the discrete item index, bridging the discrete and continuous item spaces for diffusion models and ensuring consistency with the diffusion framework. Building on this framework, we present the Dual Conditional Diffusion Transformer (DCDT) that incorporates the implicit conditional and the explicit conditional for diffusion-based SR. Extensive experiments on public benchmark datasets demonstrate that DCRec outperforms state-of-the-art methods.
Abstract:This paper introduces StyleSpeech, a novel Text-to-Speech~(TTS) system that enhances the naturalness and accuracy of synthesized speech. Building upon existing TTS technologies, StyleSpeech incorporates a unique Style Decorator structure that enables deep learning models to simultaneously learn style and phoneme features, improving adaptability and efficiency through the principles of Lower Rank Adaptation~(LoRA). LoRA allows efficient adaptation of style features in pre-trained models. Additionally, we introduce a novel automatic evaluation metric, the LLM-Guided Mean Opinion Score (LLM-MOS), which employs large language models to offer an objective and robust protocol for automatically assessing TTS system performance. Extensive testing on benchmark datasets shows that our approach markedly outperforms existing state-of-the-art baseline methods in producing natural, accurate, and high-quality speech. These advancements not only pushes the boundaries of current TTS system capabilities, but also facilitate the application of TTS system in more dynamic and specialized, such as interactive virtual assistants, adaptive audiobooks, and customized voice for gaming. Speech samples can be found in https://style-speech.vercel.app
Abstract:Vector data management systems (VDMSs) have become an indispensable cornerstone in large-scale information retrieval and machine learning systems like large language models. To enhance the efficiency and flexibility of similarity search, VDMS exposes many tunable index parameters and system parameters for users to specify. However, due to the inherent characteristics of VDMS, automatic performance tuning for VDMS faces several critical challenges, which cannot be well addressed by the existing auto-tuning methods. In this paper, we introduce VDTuner, a learning-based automatic performance tuning framework for VDMS, leveraging multi-objective Bayesian optimization. VDTuner overcomes the challenges associated with VDMS by efficiently exploring a complex multi-dimensional parameter space without requiring any prior knowledge. Moreover, it is able to achieve a good balance between search speed and recall rate, delivering an optimal configuration. Extensive evaluations demonstrate that VDTuner can markedly improve VDMS performance (14.12% in search speed and 186.38% in recall rate) compared with default setting, and is more efficient compared with state-of-the-art baselines (up to 3.57 times faster in terms of tuning time). In addition, VDTuner is scalable to specific user preference and cost-aware optimization objective. VDTuner is available online at https://github.com/tiannuo-yang/VDTuner.
Abstract:Recent methods utilize graph contrastive Learning within graph-structured user-item interaction data for collaborative filtering and have demonstrated their efficacy in recommendation tasks. However, they ignore that the difference relation density of nodes between the user- and item-side causes the adaptability of graphs on bilateral nodes to be different after multi-hop graph interaction calculation, which limits existing models to achieve ideal results. To solve this issue, we propose a novel framework for recommendation tasks called Bilateral Unsymmetrical Graph Contrastive Learning (BusGCL) that consider the bilateral unsymmetry on user-item node relation density for sliced user and item graph reasoning better with bilateral slicing contrastive training. Especially, taking into account the aggregation ability of hypergraph-based graph convolutional network (GCN) in digging implicit similarities is more suitable for user nodes, embeddings generated from three different modules: hypergraph-based GCN, GCN and perturbed GCN, are sliced into two subviews by the user- and item-side respectively, and selectively combined into subview pairs bilaterally based on the characteristics of inter-node relation structure. Furthermore, to align the distribution of user and item embeddings after aggregation, a dispersing loss is leveraged to adjust the mutual distance between all embeddings for maintaining learning ability. Comprehensive experiments on two public datasets have proved the superiority of BusGCL in comparison to various recommendation methods. Other models can simply utilize our bilateral slicing contrastive learning to enhance recommending performance without incurring extra expenses.
Abstract:Recent years have seen the explosion of edge intelligence with powerful Deep Neural Networks (DNNs). One popular scheme is training DNNs on powerful cloud servers and subsequently porting them to mobile devices after being lightweight. Conventional approaches manually specialized DNNs for various edge platforms and retrain them with real-world data. However, as the number of platforms increases, these approaches become labour-intensive and computationally prohibitive. Additionally, real-world data tends to be sparse-label, further increasing the difficulty of lightweight models. In this paper, we propose MatchNAS, a novel scheme for porting DNNs to mobile devices. Specifically, we simultaneously optimise a large network family using both labelled and unlabelled data and then automatically search for tailored networks for different hardware platforms. MatchNAS acts as an intermediary that bridges the gap between cloud-based DNNs and edge-based DNNs.
Abstract:Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.
Abstract:Early prediction of Alzheimer's disease (AD) is crucial for timely intervention and treatment. This study aims to use machine learning approaches to analyze longitudinal electronic health records (EHRs) of patients with AD and identify signs and symptoms that can predict AD onset earlier. We used a case-control design with longitudinal EHRs from the U.S. Department of Veterans Affairs Veterans Health Administration (VHA) from 2004 to 2021. Cases were VHA patients with AD diagnosed after 1/1/2016 based on ICD-10-CM codes, matched 1:9 with controls by age, sex and clinical utilization with replacement. We used a panel of AD-related keywords and their occurrences over time in a patient's longitudinal EHRs as predictors for AD prediction with four machine learning models. We performed subgroup analyses by age, sex, and race/ethnicity, and validated the model in a hold-out and "unseen" VHA stations group. Model discrimination, calibration, and other relevant metrics were reported for predictions up to ten years before ICD-based diagnosis. The study population included 16,701 cases and 39,097 matched controls. The average number of AD-related keywords (e.g., "concentration", "speaking") per year increased rapidly for cases as diagnosis approached, from around 10 to over 40, while remaining flat at 10 for controls. The best model achieved high discriminative accuracy (ROCAUC 0.997) for predictions using data from at least ten years before ICD-based diagnoses. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.99) and consistent across subgroups of age, sex and race/ethnicity, except for patients younger than 65 (ROCAUC 0.746). Machine learning models using AD-related keywords identified from EHR notes can predict future AD diagnoses, suggesting its potential use for identifying AD risk using EHR notes, offering an affordable way for early screening on large population.
Abstract:Localization is important for a large number of Internet of Things (IoT) endpoint devices connected by LoRaWAN. Due to the bandwidth limitations of LoRaWAN, existing localization methods without specialized hardware (e.g., GPS) produce poor performance. To increase the localization accuracy, we propose a super-resolution localization method, called Seirios, which features a novel algorithm to synchronize multiple non-overlapped communication channels by exploiting the unique features of the radio physical layer to increase the overall bandwidth. By exploiting both the original and the conjugate of the physical layer, Seirios can resolve the direct path from multiple reflectors in both indoor and outdoor environments. We design a Seirios prototype and evaluate its performance in an outdoor area of 100 m $\times$ 60 m, and an indoor area of 25 m $\times$ 15 m, which shows that Seirios can achieve a median error of 4.4 m outdoors (80% samples < 6.4 m), and 2.4 m indoors (80% samples < 6.1 m), respectively. The results show that Seirios produces 42% less localization error than the baseline approach. Our evaluation also shows that, different to previous studies in Wi-Fi localization systems that have wider bandwidth, time-of-fight (ToF) estimation is less effective for LoRaWAN localization systems with narrowband radio signals.
Abstract:While decade-long research has clearly demonstrated the vast potential of radio frequency (RF) for many human sensing tasks, scaling this technology to large scenarios remained problematic with conventional approaches. Recently, researchers have successfully applied deep learning to take radio-based sensing to a new level. Many different types of deep learning models have been proposed to achieve high sensing accuracy over a large population and activity set, as well as in unseen environments. Deep learning has also enabled detection of novel human sensing phenomena that were previously not possible. In this survey, we provide a comprehensive review and taxonomy of recent research efforts on deep learning based RF sensing. We also identify and compare several publicly released labeled RF sensing datasets that can facilitate such deep learning research. Finally, we summarize the lessons learned and discuss the current limitations and future directions of deep learning based RF sensing.
Abstract:Piezoelectric energy harvester, which generates electricity from stress or vibrations, is gaining increasing attention as a viable solution to extend battery life in wearables. Recent research further reveals that, besides generating energy, PEH can also serve as a passive sensor to detect human gait power-efficiently because its stress or vibration patterns are significantly influenced by the gait. However, as PEHs are not designed for precise measurement of motion, achievable gait recognition accuracy remains low with conventional classification algorithms. The accuracy deteriorates further when the generated electricity is stored simultaneously. To classify gait reliably while simultaneously storing generated energy, we make two distinct contributions. First, we propose a preprocessing algorithm to filter out the effect of energy storage on PEH electricity signal. Second, we propose a long short-term memory (LSTM) network-based classifier to accurately capture temporal information in gait-induced electricity generation. We prototype the proposed gait recognition architecture in the form factor of an insole and evaluate its gait recognition as well as energy harvesting performance with 20 subjects. Our results show that the proposed architecture detects human gait with 12% higher recall and harvests up to 127% more energy while consuming 38% less power compared to the state-of-the-art.