Abstract:Current approaches using sequential networks have shown promise in estimating field variables for dynamical systems, but they are often limited by high rollout errors. The unresolved issue of rollout error accumulation results in unreliable estimations as the network predicts further into the future, with each step's error compounding and leading to an increase in inaccuracy. Here, we introduce the State-Exchange Attention (SEA) module, a novel transformer-based module enabling information exchange between encoded fields through multi-head cross-attention. The cross-field multidirectional information exchange design enables all state variables in the system to exchange information with one another, capturing physical relationships and symmetries between fields. In addition, we incorporate a ViT-like architecture to generate spatially coherent mesh embeddings, further improving the model's ability to capture spatial dependencies in the data. This enhances the model's ability to represent complex interactions between the field variables, resulting in improved rollout error accumulation. Our results show that the Transformer model integrated with the State-Exchange Attention (SEA) module outperforms competitive baseline models, including the PbGMR-GMUS Transformer-RealNVP and GMR-GMUS Transformer, with a reduction in error of 88\% and 91\%, respectively, achieving state-of-the-art performance. Furthermore, we demonstrate that the SEA module alone can reduce errors by 97\% for state variables that are highly dependent on other states of the system.
Abstract:Facial expression recognition (FER) methods have made great inroads in categorising moods and feelings in humans. Beyond FER, pain estimation methods assess levels of intensity in pain expressions, however assessing the quality of all facial expressions is of critical value in health-related applications. In this work, we address the quality of five different facial expressions in patients affected by Parkinson's disease. We propose a novel landmark-guided approach, QAFE-Net, that combines temporal landmark heatmaps with RGB data to capture small facial muscle movements that are encoded and mapped to severity scores. The proposed approach is evaluated on a new Parkinson's Disease Facial Expression dataset (PFED5), as well as on the pain estimation benchmark, the UNBC-McMaster Shoulder Pain Expression Archive Database. Our comparative experiments demonstrate that the proposed method outperforms SOTA action quality assessment works on PFED5 and achieves lower mean absolute error than the SOTA pain estimation methods on UNBC-McMaster. Our code and the new PFED5 dataset are available at https://github.com/shuchaoduan/QAFE-Net.
Abstract:The limited availability of labelled data in Action Quality Assessment (AQA), has forced previous works to fine-tune their models pretrained on large-scale domain-general datasets. This common approach results in weak generalisation, particularly when there is a significant domain shift. We propose a novel, parameter efficient, continual pretraining framework, PECoP, to reduce such domain shift via an additional pretraining stage. In PECoP, we introduce 3D-Adapters, inserted into the pretrained model, to learn spatiotemporal, in-domain information via self-supervised learning where only the adapter modules' parameters are updated. We demonstrate PECoP's ability to enhance the performance of recent state-of-the-art methods (MUSDL, CoRe, and TSA) applied to AQA, leading to considerable improvements on benchmark datasets, JIGSAWS ($\uparrow6.0\%$), MTL-AQA ($\uparrow0.99\%$), and FineDiving ($\uparrow2.54\%$). We also present a new Parkinson's Disease dataset, PD4T, of real patients performing four various actions, where we surpass ($\uparrow3.56\%$) the state-of-the-art in comparison. Our code, pretrained models, and the PD4T dataset are available at https://github.com/Plrbear/PECoP.
Abstract:Despite the outstanding success of self-supervised pretraining methods for video representation learning, they generalise poorly when the unlabeled dataset for pretraining is small or the domain difference between unlabelled data in source task (pretraining) and labeled data in target task (finetuning) is significant. To mitigate these issues, we propose a novel approach to complement self-supervised pretraining via an auxiliary pretraining phase, based on knowledge similarity distillation, auxSKD, for better generalisation with a significantly smaller amount of video data, e.g. Kinetics-100 rather than Kinetics-400. Our method deploys a teacher network that iteratively distils its knowledge to the student model by capturing the similarity information between segments of unlabelled video data. The student model then solves a pretext task by exploiting this prior knowledge. We also introduce a novel pretext task, Video Segment Pace Prediction or VSPP, which requires our model to predict the playback speed of a randomly selected segment of the input video to provide more reliable self-supervised representations. Our experimental results show superior results to the state of the art on both UCF101 and HMDB51 datasets when pretraining on K100. Additionally, we show that our auxiliary pertaining, auxSKD, when added as an extra pretraining phase to recent state of the art self-supervised methods (e.g. VideoPace and RSPNet), improves their results on UCF101 and HMDB51. Our code will be released soon.
Abstract:Evaluating neurological disorders such as Parkinson's disease (PD) is a challenging task that requires the assessment of several motor and non-motor functions. In this paper, we present an end-to-end deep learning framework to measure PD severity in two important components, hand movement and gait, of the Unified Parkinson's Disease Rating Scale (UPDRS). Our method leverages on an Inflated 3D CNN trained by a temporal segment framework to learn spatial and long temporal structure in video data. We also deploy a temporal attention mechanism to boost the performance of our model. Further, motion boundaries are explored as an extra input modality to assist in obfuscating the effects of camera motion for better movement assessment. We ablate the effects of different data modalities on the accuracy of the proposed network and compare with other popular architectures. We evaluate our proposed method on a dataset of 25 PD patients, obtaining 72.3% and 77.1% top-1 accuracy on hand movement and gait tasks respectively.
Abstract:Accurate and reliable image segmentation is an essential part of biomedical image analysis. In this paper, we consider the problem of biomedical image segmentation using deep convolutional neural networks. We propose a new end-to-end network architecture that effectively integrates local and global contextual patterns of histologic primitives to obtain a more reliable segmentation result. Specifically, we introduce a deep fully convolution residual network with a new skip connection strategy to control the contextual information passed forward. Moreover, our trained model is also computationally inexpensive due to its small number of network parameters. We evaluate our method on two public datasets for epithelium segmentation and tubule segmentation tasks. Our experimental results show that the proposed method provides a fast and effective way of producing a pixel-wise dense prediction of biomedical images.
Abstract:Robust recognition of hand gesture in real-world applications is still a challenging task due to the many aspects such as cluttered backgrounds and uncontrolled environment factors. In most existing methods hand segmentation is a primary step for hand gesture recognition, because it reduces redundant information from the image background, before passing them to the recognition stages. Therefore, in this paper we propose a two-stage deep convolutional neural network (CNN) architecture called HGR-Net, where the first stage performs accurate pixel-level semantic segmentation into hand region and the second stage identifies hand gesture style. The segmentation stage architecture is based on the combination of fully convolutional deep residual neural network and atrous spatial pyramid pooling. Although the segmentation sub-network is trained without using depth information, it is robust enough against challenging situations such as changes in the lightning and complex backgrounds. In the recognition stage a two-stream CNN is used to obtain the best classification score. We also apply an effective data augmentation technique for maximizing the generalization capability of HGR-Net. Extensive experiments on public hand gesture datasets show that our deep architecture achieves prominent performance in segmentation and recognition for static hand gestures.