Abstract:Large-scale cloud systems play a pivotal role in modern IT infrastructure. However, incidents occurring within these systems can lead to service disruptions and adversely affect user experience. To swiftly resolve such incidents, on-call engineers depend on crafting domain-specific language (DSL) queries to analyze telemetry data. However, writing these queries can be challenging and time-consuming. This paper presents a thorough empirical study on the utilization of queries of KQL, a DSL employed for incident management in a large-scale cloud management system at Microsoft. The findings obtained underscore the importance and viability of KQL queries recommendation to enhance incident management. Building upon these valuable insights, we introduce Xpert, an end-to-end machine learning framework that automates KQL recommendation process. By leveraging historical incident data and large language models, Xpert generates customized KQL queries tailored to new incidents. Furthermore, Xpert incorporates a novel performance metric called Xcore, enabling a thorough evaluation of query quality from three comprehensive perspectives. We conduct extensive evaluations of Xpert, demonstrating its effectiveness in offline settings. Notably, we deploy Xpert in the real production environment of a large-scale incident management system in Microsoft, validating its efficiency in supporting incident management. To the best of our knowledge, this paper represents the first empirical study of its kind, and Xpert stands as a pioneering DSL query recommendation framework designed for incident management.
Abstract:Recent advancements in large language models (LLMs) have shown promising results across a variety of natural language processing (NLP) tasks. The application of LLMs to specific domains, such as biomedicine, has achieved increased attention. However, most biomedical LLMs focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To further investigate the effectiveness of the LLMs on diverse biomedical NLP tasks in different languages, we present Taiyi, a bilingual (English and Chinese) fine-tuned LLM for diverse biomedical tasks. In this work, we first curated a comprehensive collection of 140 existing biomedical text mining datasets across over 10 task types. Subsequently, a two-stage strategy is proposed for supervised fine-tuning to optimize the model performance across varied tasks. Experimental results on 13 test sets covering named entity recognition, relation extraction, text classification, question answering tasks demonstrate Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multi-tasking. The source code, datasets, and model for Taiyi are freely available at https://github.com/DUTIR-BioNLP/Taiyi-LLM.
Abstract:Bokeh effect is an optical phenomenon that offers a pleasant visual experience, typically generated by high-end cameras with wide aperture lenses. The task of bokeh effect transformation aims to produce a desired effect in one set of lenses and apertures based on another combination. Current models are limited in their ability to render a specific set of bokeh effects, primarily transformations from sharp to blur. In this paper, we propose a novel universal method for embedding lens metadata into the model and introducing a loss calculation method using alpha masks from the newly released Bokeh Effect Transformation Dataset(BETD) [3]. Based on the above techniques, we propose the BokehOrNot model, which is capable of producing both blur-to-sharp and sharp-to-blur bokeh effect with various combinations of lenses and aperture sizes. Our proposed model outperforms current leading bokeh rendering and image restoration models and renders visually natural bokeh effects. Our code is available at: https://github.com/indicator0/bokehornot.
Abstract:Recognition of biomedical entities from literature is a challenging research focus, which is the foundation for extracting a large amount of biomedical knowledge existing in unstructured texts into structured formats. Using the sequence labeling framework to implement biomedical named entity recognition (BioNER) is currently a conventional method. This method, however, often cannot take full advantage of the semantic information in the dataset, and the performance is not always satisfactory. In this work, instead of treating the BioNER task as a sequence labeling problem, we formulate it as a machine reading comprehension (MRC) problem. This formulation can introduce more prior knowledge utilizing well-designed queries, and no longer need decoding processes such as conditional random fields (CRF). We conduct experiments on six BioNER datasets, and the experimental results demonstrate the effectiveness of our method. Our method achieves state-of-the-art (SOTA) performance on the BC4CHEMD, BC5CDR-Chem, BC5CDR-Disease, NCBI Disease, BC2GM and JNLPBA datasets, with F1-scores of 92.38%, 94.19%, 87.36%, 90.04%, 84.98% and 78.93%, respectively.
Abstract:The biomedical literature contains a wealth of chemical-protein interactions (CPIs). Automatically extracting CPIs described in biomedical literature is essential for drug discovery, precision medicine, as well as basic biomedical research. However, the existing methods do not consider the impact of overlapping relations on CPI extraction. This leads to the extraction of sentences with overlapping relations becoming the bottleneck of CPI extraction. In this paper, we propose a novel neural network-based approach to improve the CPI extraction performance of sentences with overlapping relations. Specifically, the approach first employs BERT to generate high-quality contextual representations of the title sequence, instance sequence, and knowledge sequence. Then, the Gaussian probability distribution is introduced to capture the local structure of the instance. Meanwhile, the attention mechanism is applied to fuse the title information and biomedical knowledge, respectively. Finally, the related representations are concatenated and fed into the softmax function to extract CPIs. We evaluate our proposed model on the CHEMPROT corpus. Our proposed model is superior in performance as compared with other state-of-the-art models. The experimental results show that the Gaussian probability distribution and external knowledge are complementary to each other. Integrating them can effectively improve the CPI extraction performance. Furthermore, the Gaussian probability distribution can significantly improve the extraction performance of sentences with overlapping relations in biomedical relation extraction tasks. Data and code are available at https://github.com/CongSun-dlut/CPI_extraction.