Abstract:Multiple instance learning (MIL) has been successfully applied for whole slide images (WSIs) analysis in computational pathology, enabling a wide range of prediction tasks from tumor subtyping to inferring genetic mutations and multi-omics biomarkers. However, existing MIL methods predominantly focus on single-task learning, resulting in not only overall low efficiency but also the overlook of inter-task relatedness. To address these issues, we proposed an adapted architecture of Multi-gate Mixture-of-experts with Multi-proxy for Multiple instance learning (M4), and applied this framework for simultaneous prediction of multiple genetic mutations from WSIs. The proposed M4 model has two main innovations: (1) utilizing a mixture of experts with multiple gating strategies for multi-genetic mutation prediction on a single pathological slide; (2) constructing multi-proxy expert network and gate network for comprehensive and effective modeling of pathological image information. Our model achieved significant improvements across five tested TCGA datasets in comparison to current state-of-the-art single-task methods. The code is available at:https://github.com/Bigyehahaha/M4.
Abstract:Automatic speech recognition (ASR) systems used on smart phones or vehicles are usually required to process speech queries from very different domains. In such situations, a vanilla ASR system usually fails to perform well on every domain. This paper proposes a multi-domain ASR framework for Tencent Map, a navigation app used on smart phones and in-vehicle infotainment systems. The proposed framework consists of three core parts: a basic ASR module to generate n-best lists of a speech query, a text classification module to determine which domain the speech query belongs to, and a reranking module to rescore n-best lists using domain-specific language models. In addition, an instance sampling based method to training neural network language models (NNLMs) is proposed to address the data imbalance problem in multi-domain ASR. In experiments, the proposed framework was evaluated on navigation domain and music domain, since navigating and playing music are two main features of Tencent Map. Compared to a general ASR system, the proposed framework achieves a relative 13% $\sim$ 22% character error rate reduction on several test sets collected from Tencent Map and our in-car voice assistant.
Abstract:Nowadays voice search for points of interest (POI) is becoming increasingly popular. However, speech recognition for local POI has remained to be a challenge due to multi-dialect and massive POI. This paper improves speech recognition accuracy for local POI from two aspects. Firstly, a geographic acoustic model (Geo-AM) is proposed. The Geo-AM deals with multi-dialect problem using dialect-specific input feature and dialect-specific top layer. Secondly, a group of geo-specific language models (Geo-LMs) are integrated into our speech recognition system to improve recognition accuracy of long tail and homophone POI. During decoding, specific language models are selected on demand according to users' geographic location. Experiments show that the proposed Geo-AM achieves 6.5%$\sim$10.1% relative character error rate (CER) reduction on an accent testset and the proposed Geo-AM and Geo-LM totally achieve over 18.7% relative CER reduction on Tencent Map task.
Abstract:The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators. Characterizing the memory behaviors of DNN training is critical to optimize the device memory pressures. In this work, we pinpoint the memory behaviors of each device memory block of GPU during training by instrumenting the memory allocators of the runtime system. Our results show that the memory access patterns of device memory blocks are stable and follow an iterative fashion. These observations are useful for the future optimization of memory-efficient training from the perspective of raw memory access patterns.
Abstract:The increasing computational cost of deep neural network models limits the applicability of intelligent applications on resource-constrained edge devices. While a number of neural network pruning methods have been proposed to compress the models, prevailing approaches focus only on parametric operators (e.g., convolution), which may miss optimization opportunities. In this paper, we present a novel fusion-catalyzed pruning approach, called FuPruner, which simultaneously optimizes the parametric and non-parametric operators for accelerating neural networks. We introduce an aggressive fusion method to equivalently transform a model, which extends the optimization space of pruning and enables non-parametric operators to be pruned in a similar manner as parametric operators, and a dynamic filter pruning method is applied to decrease the computational cost of models while retaining the accuracy requirement. Moreover, FuPruner provides configurable optimization options for controlling fusion and pruning, allowing much more flexible performance-accuracy trade-offs to be made. Evaluation with state-of-the-art residual neural networks on five representative intelligent edge platforms, Jetson TX2, Jetson Nano, Edge TPU, NCS, and NCS2, demonstrates the effectiveness of our approach, which can accelerate the inference of models on CIFAR-10 and ImageNet datasets.
Abstract:Accelerating deep convolutional neural networks has become an active topic and sparked an interest in academia and industry. In this paper, we propose an efficient low-precision quantized Winograd convolution algorithm, called LANCE, which combines the advantages of fast convolution and quantization techniques. By embedding linear quantization operations into the Winograd-domain, the fast convolution can be performed efficiently under low-precision computation on graphics processing units. We test neural network models with LANCE on representative image classification datasets, including SVHN, CIFAR, and ImageNet. The experimental results show that our 8-bit quantized Winograd convolution improves the performance by up to 2.40x over the full-precision convolution with trivial accuracy loss.
Abstract:Background subtraction is a significant component of computer vision systems. It is widely used in video surveillance, object tracking, anomaly detection, etc. A new data source for background subtraction appeared as the emergence of low-cost depth sensors like Microsof t Kinect, Asus Xtion PRO, etc. In this paper, we propose a background subtraction approach on depth videos, which is based on convolutional neural networks (CNNs), called BGSNet-D (BackGround Subtraction neural Networks for Depth videos). The method can be used in color unavailable scenarios like poor lighting situations, and can also be applied to combine with existing RGB background subtraction methods. A preprocessing strategy is designed to reduce the influences incurred by noise from depth sensors. The experimental results on the SBM-RGBD dataset show that the proposed method outperforms existing methods on depth data.
Abstract:Recently, deep neural networks (DNNs) have been widely applied in mobile intelligent applications. The inference for the DNNs is usually performed in the cloud. However, it leads to a large overhead of transmitting data via wireless network. In this paper, we demonstrate the advantages of the cloud-edge collaborative inference with quantization. By analyzing the characteristics of layers in DNNs, an auto-tuning neural network quantization framework for collaborative inference is proposed. We study the effectiveness of mixed-precision collaborative inference of state-of-the-art DNNs by using ImageNet dataset. The experimental results show that our framework can generate reasonable network partitions and reduce the storage on mobile devices with trivial loss of accuracy.
Abstract:In this paper we propose and study an optimization problem over a matrix group orbit that we call \emph{Group Orbit Optimization} (GOO). We prove that GOO can be used to induce matrix decomposition techniques such as singular value decomposition (SVD), LU decomposition, QR decomposition, Schur decomposition and Cholesky decomposition, etc. This gives rise to a unified framework for matrix decomposition and allows us to bridge these matrix decomposition methods. Moreover, we generalize GOO for tensor decomposition. As a concrete application of GOO, we devise a new data decomposition method over a special linear group to normalize point cloud data. Experiment results show that our normalization method is able to obtain recovery well from distortions like shearing, rotation and squeezing.