Abstract:Neural speech codecs have gained great attention for their outstanding reconstruction with discrete token representations. It is a crucial component in generative tasks such as speech coding and large language models (LLM). However, most works based on residual vector quantization perform worse with fewer tokens due to low coding efficiency for modeling complex coupled information. In this paper, we propose a neural speech codec named FreeCodec which employs a more effective encoding framework by decomposing intrinsic properties of speech into different components: 1) a global vector is extracted as the timbre information, 2) a prosody encoder with a long stride level is used to model the prosody information, 3) the content information is from a content encoder. Using different training strategies, FreeCodec achieves state-of-the-art performance in reconstruction and disentanglement scenarios. Results from subjective and objective experiments demonstrate that our framework outperforms existing methods.
Abstract:Monocular depth estimation is crucial for tracking and reconstruction algorithms, particularly in the context of surgical videos. However, the inherent challenges in directly obtaining ground truth depth maps during surgery render supervised learning approaches impractical. While many self-supervised methods based on Structure from Motion (SfM) have shown promising results, they rely heavily on high-quality camera motion and require optimization on a per-patient basis. These limitations can be mitigated by leveraging the current state-of-the-art foundational model for depth estimation, Depth Anything. However, when directly applied to surgical scenes, Depth Anything struggles with issues such as blurring, bleeding, and reflections, resulting in suboptimal performance. This paper presents a fine-tuning of the Depth Anything model specifically for the surgical domain, aiming to deliver more accurate pixel-wise depth maps tailored to the unique requirements and challenges of surgical environments. Our fine-tuning approach significantly improves the model's performance in surgical scenes, reducing errors related to blurring and reflections, and achieving a more reliable and precise depth estimation.
Abstract:Cochlear Implant (CI) procedures involve performing an invasive mastoidectomy to insert an electrode array into the cochlea. In this paper, we introduce a novel pipeline that is capable of generating synthetic multi-view videos from a single CI microscope image. In our approach, we use a patient's pre-operative CT scan to predict the post-mastoidectomy surface using a method designed for this purpose. We manually align the surface with a selected microscope frame to obtain an accurate initial pose of the reconstructed CT mesh relative to the microscope. We then perform UV projection to transfer the colors from the frame to surface textures. Novel views of the textured surface can be used to generate a large dataset of synthetic frames with ground truth poses. We evaluated the quality of synthetic views rendered using Pytorch3D and PyVista. We found both rendering engines lead to similarly high-quality synthetic novel-view frames compared to ground truth with a structural similarity index for both methods averaging about 0.86. A large dataset of novel views with known poses is critical for ongoing training of a method to automatically estimate microscope pose for 2D to 3D registration with the pre-operative CT to facilitate augmented reality surgery. This dataset will empower various downstream tasks, such as integrating Augmented Reality (AR) in the OR, tracking surgical tools, and supporting other video analysis studies.
Abstract:Empowering LLMs with the ability to utilize useful information from a long context is crucial for many downstream applications. However, achieving long context lengths with the conventional transformer architecture requires substantial training and inference resources. In this paper, we present FocusLLM, a framework designed to extend the context length of any decoder-only LLM, enabling the model to focus on relevant information from very long sequences. FocusLLM processes long text inputs by dividing them into chunks based on the model's original context length to alleviate the issue of attention distraction. Then, it appends the local context to each chunk as a prompt to extract essential information from each chunk based on a novel parallel decoding mechanism, and ultimately integrates the extracted information into the local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream long-context tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.
Abstract:Audio-LLM introduces audio modality into a large language model (LLM) to enable a powerful LLM to recognize, understand, and generate audio. However, during speech recognition in noisy environments, we observed the presence of illusions and repetition issues in audio-LLM, leading to substitution and insertion errors. This paper proposes a transcription prompt-based audio-LLM by introducing an ASR expert as a transcription tokenizer and a hybrid Autoregressive (AR) Non-autoregressive (NAR) decoding approach to solve the above problems. Experiments on 10k-hour WenetSpeech Mandarin corpus show that our approach decreases 12.2% and 9.6% CER relatively on Test_Net and Test_Meeting evaluation sets compared with baseline. Notably, we reduce the decoding repetition rate on the evaluation set to zero, showing that the decoding repetition problem has been solved fundamentally.
Abstract:The Segment Anything Model 2 (SAM 2) is the latest generation foundation model for image and video segmentation. Trained on the expansive Segment Anything Video (SA-V) dataset, which comprises 35.5 million masks across 50.9K videos, SAM 2 advances its predecessor's capabilities by supporting zero-shot segmentation through various prompts (e.g., points, boxes, and masks). Its robust zero-shot performance and efficient memory usage make SAM 2 particularly appealing for surgical tool segmentation in videos, especially given the scarcity of labeled data and the diversity of surgical procedures. In this study, we evaluate the zero-shot video segmentation performance of the SAM 2 model across different types of surgeries, including endoscopy and microscopy. We also assess its performance on videos featuring single and multiple tools of varying lengths to demonstrate SAM 2's applicability and effectiveness in the surgical domain. We found that: 1) SAM 2 demonstrates a strong capability for segmenting various surgical videos; 2) When new tools enter the scene, additional prompts are necessary to maintain segmentation accuracy; and 3) Specific challenges inherent to surgical videos can impact the robustness of SAM 2.
Abstract:Cochlear Implant (CI) procedures involve inserting an array of electrodes into the cochlea located inside the inner ear. Mastoidectomy is a surgical procedure that uses a high-speed drill to remove part of the mastoid region of the temporal bone, providing safe access to the cochlea through the middle and inner ear. We aim to develop an intraoperative navigation system that registers plans created using 3D preoperative Computerized Tomography (CT) volumes with the 2D surgical microscope view. Herein, we propose a method to synthesize the mastoidectomy volume using only the preoperative CT scan, where the mastoid is intact. We introduce an unsupervised learning framework designed to synthesize mastoidectomy. For model training purposes, this method uses postoperative CT scans to avoid manual data cleaning or labeling, even when the region removed during mastoidectomy is visible but affected by metal artifacts, low signal-to-noise ratio, or electrode wiring. Our approach estimates mastoidectomy regions with a mean dice score of 70.0%. This approach represents a major step forward for CI intraoperative navigation by predicting realistic mastoidectomy-removed regions in preoperative planning that can be used to register the pre-surgery plan to intraoperative microscopy.
Abstract:This study presents a novel framework for 3D gaze tracking tailored for mixed-reality settings, aimed at enhancing joint attention and collaborative efforts in team-based scenarios. Conventional gaze tracking, often limited by monocular cameras and traditional eye-tracking apparatus, struggles with simultaneous data synchronization and analysis from multiple participants in group contexts. Our proposed framework leverages state-of-the-art computer vision and machine learning techniques to overcome these obstacles, enabling precise 3D gaze estimation without dependence on specialized hardware or complex data fusion. Utilizing facial recognition and deep learning, the framework achieves real-time, tracking of gaze patterns across several individuals, addressing common depth estimation errors, and ensuring spatial and identity consistency within the dataset. Empirical results demonstrate the accuracy and reliability of our method in group environments. This provides mechanisms for significant advances in behavior and interaction analysis in educational and professional training applications in dynamic and unstructured environments.
Abstract:Investigating children's embodied learning in mixed-reality environments, where they collaboratively simulate scientific processes, requires analyzing complex multimodal data to interpret their learning and coordination behaviors. Learning scientists have developed Interaction Analysis (IA) methodologies for analyzing such data, but this requires researchers to watch hours of videos to extract and interpret students' learning patterns. Our study aims to simplify researchers' tasks, using Machine Learning and Multimodal Learning Analytics to support the IA processes. Our study combines machine learning algorithms and multimodal analyses to support and streamline researcher efforts in developing a comprehensive understanding of students' scientific engagement through their movements, gaze, and affective responses in a simulated scenario. To facilitate an effective researcher-AI partnership, we present an initial case study to determine the feasibility of visually representing students' states, actions, gaze, affect, and movement on a timeline. Our case study focuses on a specific science scenario where students learn about photosynthesis. The timeline allows us to investigate the alignment of critical learning moments identified by multimodal and interaction analysis, and uncover insights into students' temporal learning progressions.
Abstract:For those experiencing severe-to-profound sensorineural hearing loss, the cochlear implant (CI) is the preferred treatment. Augmented reality (AR) aided surgery can potentially improve CI procedures and hearing outcomes. Typically, AR solutions for image-guided surgery rely on optical tracking systems to register pre-operative planning information to the display so that hidden anatomy or other important information can be overlayed and co-registered with the view of the surgical scene. In this paper, our goal is to develop a method that permits direct 2D-to-3D registration of the microscope video to the pre-operative Computed Tomography (CT) scan without the need for external tracking equipment. Our proposed solution involves using surface mapping of a portion of the incus in surgical recordings and determining the pose of this structure relative to the surgical microscope by performing pose estimation via the perspective-n-point (PnP) algorithm. This registration can then be applied to pre-operative segmentations of other anatomy-of-interest, as well as the planned electrode insertion trajectory to co-register this information for the AR display. Our results demonstrate the accuracy with an average rotation error of less than 25 degrees and a translation error of less than 2 mm, 3 mm, and 0.55% for the x, y, and z axes, respectively. Our proposed method has the potential to be applicable and generalized to other surgical procedures while only needing a monocular microscope during intra-operation.