Abstract:Conversational speech synthesis (CSS) aims to synthesize both contextually appropriate and expressive speech, and considerable efforts have been made to enhance the understanding of conversational context. However, existing CSS systems are limited to deterministic prediction, overlooking the diversity of potential responses. Moreover, they rarely employ language model (LM)-based TTS backbones, limiting the naturalness and quality of synthesized speech. To address these issues, in this paper, we propose DiffCSS, an innovative CSS framework that leverages diffusion models and an LM-based TTS backbone to generate diverse, expressive, and contextually coherent speech. A diffusion-based context-aware prosody predictor is proposed to sample diverse prosody embeddings conditioned on multimodal conversational context. Then a prosody-controllable LM-based TTS backbone is developed to synthesize high-quality speech with sampled prosody embeddings. Experimental results demonstrate that the synthesized speech from DiffCSS is more diverse, contextually coherent, and expressive than existing CSS systems
Abstract:Referring Expression Comprehension (REC) is one of the most important tasks in visual reasoning that requires a model to detect the target object referred by a natural language expression. Among the proposed pipelines, the one-stage Referring Expression Comprehension (OSREC) has become the dominant trend since it merges the region proposal and selection stages. Many state-of-the-art OSREC models adopt a multi-hop reasoning strategy because a sequence of objects is frequently mentioned in a single expression which needs multi-hop reasoning to analyze the semantic relation. However, one unsolved issue of these models is that the number of reasoning steps needs to be pre-defined and fixed before inference, ignoring the varying complexity of expressions. In this paper, we propose a Dynamic Multi-step Reasoning Network, which allows the reasoning steps to be dynamically adjusted based on the reasoning state and expression complexity. Specifically, we adopt a Transformer module to memorize & process the reasoning state and a Reinforcement Learning strategy to dynamically infer the reasoning steps. The work achieves the state-of-the-art performance or significant improvements on several REC datasets, ranging from RefCOCO (+, g) with short expressions, to Ref-Reasoning, a dataset with long and complex compositional expressions.