EPFL
Abstract:Federated learning (FL) is a popular paradigm for collaborative training which avoids direct data exposure between clients. However, data privacy issues still remain: FL-trained large language models are capable of memorizing and completing phrases and sentences contained in training data when given with their prefixes. Thus, it is possible for adversarial and honest-but-curious clients to recover training data of other participants simply through targeted prompting. In this work, we demonstrate that a popular and simple fine-tuning strategy, low-rank adaptation (LoRA), reduces memorization during FL up to a factor of 10. We study this effect by performing a medical question-answering fine-tuning task and injecting multiple replicas of out-of-distribution sensitive sequences drawn from an external clinical dataset. We observe a reduction in memorization for a wide variety of Llama 2 and 3 models, and find that LoRA can reduce memorization in centralized learning as well. Furthermore, we show that LoRA can be combined with other privacy-preserving techniques such as gradient clipping and Gaussian noising, secure aggregation, and Goldfish loss to further improve record-level privacy while maintaining performance.
Abstract:Large Language Models demonstrate remarkable capabilities at the cost of high compute requirements. While recent research has shown that intermediate layers can be removed or have their order shuffled without impacting performance significantly, these findings have not been employed to reduce the computational cost of inference. We investigate several potential ways to reduce the depth of pre-trained LLMs without significantly affecting performance. Leveraging our insights, we present a novel approach that exploits this decoupling between layers by grouping some of them into pairs that can be evaluated in parallel. This modification of the computational graph -- through better parallelism -- results in an average improvement of around 1.20x on the number of tokens generated per second, without re-training nor fine-tuning, while retaining 95%-99% of the original accuracy. Empirical evaluation demonstrates that this approach significantly improves serving efficiency while maintaining model performance, offering a practical improvement for large-scale LLM deployment.
Abstract:Learning Rate Warmup is a popular heuristic for training neural networks, especially at larger batch sizes, despite limited understanding of its benefits. Warmup decreases the update size $\Delta \mathbf{w}_t = \eta_t \mathbf{u}_t$ early in training by using lower values for the learning rate $\eta_t$. In this work we argue that warmup benefits training by keeping the overall size of $\Delta \mathbf{w}_t$ limited, counteracting large initial values of $\mathbf{u}_t$. Focusing on small-scale GPT training with AdamW/Lion, we explore the following question: Why and by which criteria are early updates $\mathbf{u}_t$ too large? We analyze different metrics for the update size including the $\ell_2$-norm, resulting directional change, and impact on the representations of the network, providing a new perspective on warmup. In particular, we find that warmup helps counteract large angular updates as well as a limited critical batch size early in training. Finally, we show that the need for warmup can be significantly reduced or eliminated by modifying the optimizer to explicitly normalize $\mathbf{u}_t$ based on the aforementioned metrics.
Abstract:We study stochastic second-order methods for solving general non-convex optimization problems. We propose using a special version of momentum to stabilize the stochastic gradient and Hessian estimates in Newton's method. We show that momentum provably improves the variance of stochastic estimates and allows the method to converge for any noise level. Using the cubic regularization technique, we prove a global convergence rate for our method on general non-convex problems to a second-order stationary point, even when using only a single stochastic data sample per iteration. This starkly contrasts with all existing stochastic second-order methods for non-convex problems, which typically require large batches. Therefore, we are the first to demonstrate global convergence for batches of arbitrary size in the non-convex case for the Stochastic Cubic Newton. Additionally, we show improved speed on convex stochastic problems for our regularized Newton methods with momentum.
Abstract:Influence functions provide a principled method to assess the contribution of individual training samples to a specific target. Yet, their high computational costs limit their applications on large-scale models and datasets. Existing methods proposed for influence function approximation have significantly reduced the computational overheads. However, they mostly suffer from inaccurate estimation due to the lack of strong convergence guarantees from the algorithm. The family of hyperpower methods are well-known for their rigorous convergence guarantees on matrix inverse approximation, while the matrix multiplication operation can involve intractable memory and computation costs on large-scale models. We propose HyperINF, an efficient and accurate influence function approximation method which leverages the hyperpower method, specifically Schulz's iterative algorithm. To deal with the computation-intensive matrix multiplication, we incorporate the generalized fisher information (GFIM) as a low-rank approximation of the Hessian matrix, which reduces the memory and computation overheads to constant costs independent of ranks on LoRA-tuned models. We first demonstrate the superior accuracy and stability of \method compared to other baselines through a synthetic convergence simulation for matrix inversion. We further validate the efficacy of \method through extensive real-world data attribution tasks, including mislabeled data detection and data selection for LLM and VLM fine-tuning. On LoRA-tuned models, HyperINF achieves superior downstream performance with minimal memory and computational overhead, while other baselines suffer from significant degradation. Our codebase is available at https://github.com/Blackzxy/HyperINF.
Abstract:We target on-device collaborative fine-tuning of Large Language Models (LLMs) by adapting a Mixture of Experts (MoE) architecture, where experts are Low-Rank Adaptation (LoRA) modules. In conventional MoE approaches, experts develop into specialists throughout training. In contrast, we propose a novel $\textbf{Co}$llaborative learning approach via a $\textbf{Mi}$xture of $\textbf{G}$eneralists and $\textbf{S}$pecialists (CoMiGS). Diversifying into the two roles is achieved by aggregating certain experts globally while keeping others localized to specialize in user-specific datasets. Central to our work is a learnable routing network that routes at a token level, balancing collaboration and personalization at the finest granularity. Our method consistently demonstrates superior performance in scenarios with high data heterogeneity across various datasets. By design, our approach accommodates varying computational resource constraints among users as shown in different numbers of LoRA experts. We further showcase that low-resourced users can benefit from high-resourced users with high data quantity.
Abstract:Collaborative learning is an important tool to train multiple clients more effectively by enabling communication among clients. Identifying helpful clients, however, presents challenging and often introduces significant overhead. In this paper, we model client-selection and model-training as two interconnected optimization problems, proposing a novel bilevel optimization problem for collaborative learning. We introduce CoBo, a scalable and elastic, SGD-type alternating optimization algorithm that efficiently addresses these problem with theoretical convergence guarantees. Empirically, CoBo achieves superior performance, surpassing popular personalization algorithms by 9.3% in accuracy on a task with high heterogeneity, involving datasets distributed among 80 clients.
Abstract:Learning new tasks by drawing on prior experience gathered from other (related) tasks is a core property of any intelligent system. Gradient-based meta-learning, especially MAML and its variants, has emerged as a viable solution to accomplish this goal. One problem MAML encounters is its computational and memory burdens needed to compute the meta-gradients. We propose a new first-order variant of MAML that we prove converges to a stationary point of the MAML objective, unlike other first-order variants. We also show that the MAML objective does not satisfy the smoothness assumption assumed in previous works; we show instead that its smoothness constant grows with the norm of the meta-gradient, which theoretically suggests the use of normalized or clipped-gradient methods compared to the plain gradient method used in previous works. We validate our theory on a synthetic experiment.
Abstract:AI assistants are being increasingly used by students enrolled in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI. We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses. Specifically, we compile a novel dataset of textual assessment questions from 50 courses at EPFL and evaluate whether two AI assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight prompting strategies to produce responses and find that GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions. When grouping courses in our dataset by degree program, these systems already pass non-project assessments of large numbers of core courses in various degree programs, posing risks to higher education accreditation that will be amplified as these models improve. Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
Abstract:The increasing size of deep neural networks necessitates effective model compression to improve computational efficiency and reduce their memory footprint. Sparsity and quantization are two prominent compression methods that have individually demonstrated significant reduction in computational and memory footprints while preserving model accuracy. While effective, the interplay between these two methods remains an open question. In this paper, we investigate the interaction between these two methods and assess whether their combination impacts final model accuracy. We mathematically prove that applying sparsity before quantization is the optimal sequence for these operations, minimizing error in computation. Our empirical studies across a wide range of models, including OPT and Llama model families (125M-8B) and ViT corroborate these theoretical findings. In addition, through rigorous analysis, we demonstrate that sparsity and quantization are not orthogonal; their interaction can significantly harm model accuracy, with quantization error playing a dominant role in this degradation. Our findings extend to the efficient deployment of large models in resource-limited compute platforms and reduce serving cost, offering insights into best practices for applying these compression methods to maximize efficacy without compromising accuracy.